Suppr超能文献

药物发明中作用机制的阐明:利用稳定同位素示踪剂揭示生化动力学

Elucidation of Mechanism of Action in Drug Invention: Using Stable Isotope Tracers to Unravel Biochemical Kinetics.

作者信息

Kohnz Rebecca A, Zhou Dan, Lou Bin, Yao Huifang, McKenney David, Dokwal Dhiraj, Villanueva Ruth, Kocalis Heidi, Ballard Jeanine E, Piesvaux Jennifer, Previs Stephen F

机构信息

Merck & co., Inc., South San Francisco, California, USA.

Merck & co., Inc., West Point, Pennsylvania, USA.

出版信息

Pharmacol Res Perspect. 2025 Jun;13(3):e70099. doi: 10.1002/prp2.70099.

Abstract

The invention of a therapeutic begins by characterizing features that differentiate healthy versus diseased states; this often presents as changes in the concentration of an analyte. Examples include elevated blood glucose in diabetes, high cholesterol in heart disease, and protein aggregation in neurodegeneration. Analyte concentrations reflect the (im)balance of synthetic and degradation rates; as such, aberrant biochemical kinetics drive the changes in endpoint concentration that define disease biology. Therapeutics aim to reset the concentration of a disease marker via modulation of biochemical kinetics. This is easy to understand for drugs directly targeting an enzyme in a pathway but, although less obvious, this can also be at the core of protein: protein interactions. For instance, stimulation of the insulin receptor changes the flux of several biochemical substrates (across multiple tissues); similarly, modulation of proprotein convertase subtilisin/kexin type 9-low density lipoprotein (PCSK9-LDL) receptor interactions alters cholesterol trafficking. These classic examples underscore the importance of studying biochemical kinetics at a clinical level. Here, we discuss how kinetic studies link disease biology with mechanism of action elucidation and screening. This has an immediate impact on (i) enabling in vitro-in vivo correlations in early discovery, (ii) enhancing exposure-response models aiding in human dose prediction, and (iii) providing support for biomarker plans, including clinical diagnostics. Mechanism of action studies can also influence modality selection; e.g., knowledge regarding target kinetics is needed when making decisions surrounding the development of a reversible inhibitor vs. an irreversible covalent modifier, or an intervention that affects target levels such as those which enhance protein degradation or reduce protein synthesis.

摘要

一种疗法的发明始于对区分健康状态与疾病状态的特征进行表征;这通常表现为分析物浓度的变化。例如,糖尿病患者血糖升高、心脏病患者胆固醇水平升高以及神经退行性疾病中蛋白质聚集。分析物浓度反映了合成速率与降解速率的(不)平衡;因此,异常的生化动力学驱动了定义疾病生物学的终点浓度变化。疗法旨在通过调节生化动力学来重置疾病标志物的浓度。对于直接靶向某一途径中酶的药物来说,这很容易理解,但尽管不那么明显,这也可能是蛋白质:蛋白质相互作用的核心。例如,刺激胰岛素受体会改变几种生化底物(在多个组织中)的通量;同样,调节前蛋白转化酶枯草杆菌蛋白酶/九型前蛋白转化酶-低密度脂蛋白(PCSK9-LDL)受体相互作用会改变胆固醇的转运。这些经典例子强调了在临床层面研究生化动力学的重要性。在此,我们讨论动力学研究如何将疾病生物学与作用机制的阐明及筛选联系起来。这对以下方面有直接影响:(i)在早期发现中实现体外-体内相关性,(ii)增强有助于预测人体剂量的暴露-反应模型,以及(iii)为生物标志物计划(包括临床诊断)提供支持。作用机制研究也会影响药物类型的选择;例如,在围绕可逆抑制剂与不可逆共价修饰剂的开发,或影响靶点水平的干预措施(如增强蛋白质降解或减少蛋白质合成的措施)做出决策时,需要了解靶点动力学知识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c92/12031654/a82cfdac6f51/PRP2-13-e70099-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验