Suppr超能文献

基于特征反馈的临床痤疮分级多标准伪标签学习

Feature Feedback-Based Pseudo-Label Learning for Multi-Standards in Clinical Acne Grading.

作者信息

Chen Yung-Yao, Chan Hung-Tse, Wang Hsiao-Chi, Wang Chii-Shyan, Chen Hsuan-Hsiang, Chen Po-Hua, Chen Yi-Ju, Hsu Shao-Hsuan, Hsia Chih-Hsien

机构信息

Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan.

Department of Beauty Science, National Taichung University of Science and Technology, Taichung 403027, Taiwan.

出版信息

Bioengineering (Basel). 2025 Mar 26;12(4):342. doi: 10.3390/bioengineering12040342.

Abstract

Accurate acne grading is critical in optimizing therapeutic decisions yet remains challenging due to lesion ambiguity and subjective clinical assessments. This study proposes the Feature Feedback-Based Pseudo-Label Learning (FF-PLL) framework to address these limitations through three innovations: (1) an acne feature feedback (AFF) architecture with iterative pseudo-label refinement to improve the training robustness, enhance the pseudo-label quality, and increase the feature diversity; (2) all-facial skin segmentation (AFSS) to reduce background noise, enabling precise lesion feature extraction; and (3) the AcneAugment (AA) strategy to foster model generalization by introducing diverse acne lesion representations. Experiments on the ACNE04 and ACNE-ECKH benchmark datasets demonstrate the superiority of the proposed framework, achieving accuracy of 87.33% on ACNE04 and 67.50% on ACNE-ECKH. Additionally, the model attains sensitivity of 87.31%, specificity of 90.14%, and a Youden index (YI) of 77.45% on ACNE04. These advancements establish FF-PLL as a clinically viable solution for standardized acne assessment, bridging critical gaps between computational dermatology and practical healthcare needs.

摘要

准确的痤疮分级对于优化治疗决策至关重要,但由于病变的模糊性和主观的临床评估,仍然具有挑战性。本研究提出了基于特征反馈的伪标签学习(FF-PLL)框架,通过三项创新来解决这些局限性:(1)一种痤疮特征反馈(AFF)架构,具有迭代伪标签细化功能,以提高训练的稳健性、提升伪标签质量并增加特征多样性;(2)全脸皮肤分割(AFSS)以减少背景噪声,实现精确的病变特征提取;(3)痤疮增强(AA)策略,通过引入多样化的痤疮病变表示来促进模型泛化。在ACNE04和ACNE-ECKH基准数据集上的实验证明了所提出框架的优越性,在ACNE04上的准确率达到87.33%,在ACNE-ECKH上的准确率达到67.50%。此外,该模型在ACNE04上的灵敏度为87.31%,特异性为90.14%,约登指数(YI)为77.45%。这些进展使FF-PLL成为标准化痤疮评估的临床可行解决方案,弥合了计算皮肤病学与实际医疗保健需求之间的关键差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44d2/12024611/9664f05c2456/bioengineering-12-00342-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验