Zhang Daojun, Li Huanyu, Shi Jiajia, Shen Yue, Zhu Ling, Chen Nianze, Wei Zikun, Lv Junwei, Chen Yu, Hao Fei
The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Shanghai Beforteen AI Lab, Shanghai, China.
Front Med (Lausanne). 2024 Mar 25;11:1344314. doi: 10.3389/fmed.2024.1344314. eCollection 2024.
Acne detection is critical in dermatology, focusing on quality control of acne imagery, precise segmentation, and grading. Traditional research has been limited, typically concentrating on singular aspects of acne detection.
We propose a multi-task acne detection method, employing a CenterNet-based training paradigm to develop an advanced detection system. This system collects acne images via smartphones and features multi-task capabilities for detecting image quality and identifying various acne types. It differentiates between noninflammatory acne, papules, pustules, nodules, and provides detailed delineation for cysts and post-acne scars.
The implementation of this multi-task learning-based framework in clinical diagnostics demonstrated an 83% accuracy in lesion categorization, surpassing ResNet18 models by 12%. Furthermore, it achieved a 76% precision in lesion stratification, outperforming dermatologists by 16%.
Our framework represents a advancement in acne detection, offering a comprehensive tool for classification, localization, counting, and precise segmentation. It not only enhances the accuracy of remote acne lesion identification by doctors but also clarifies grading logic and criteria, facilitating easier grading judgments.
痤疮检测在皮肤病学中至关重要,重点在于痤疮图像的质量控制、精确分割和分级。传统研究存在局限性,通常只关注痤疮检测的单一方面。
我们提出了一种多任务痤疮检测方法,采用基于CenterNet的训练范式来开发先进的检测系统。该系统通过智能手机收集痤疮图像,并具有检测图像质量和识别各种痤疮类型的多任务能力。它能区分非炎性痤疮、丘疹、脓疱、结节,并对囊肿和痤疮后疤痕进行详细描绘。
在临床诊断中实施这种基于多任务学习的框架,在病变分类方面准确率达到83%,比ResNet18模型高出12%。此外,在病变分层方面精度达到76%,比皮肤科医生高出16%。
我们的框架代表了痤疮检测方面的一项进步,提供了用于分类、定位、计数和精确分割的综合工具。它不仅提高了医生远程识别痤疮病变的准确性,还明确了分级逻辑和标准,便于更轻松地进行分级判断。