Chen Zijuan, Yu Jianyong, Wang Yulong, Xie Jinfang
School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411100, China.
Entropy (Basel). 2025 Mar 26;27(4):342. doi: 10.3390/e27040342.
With the rise of blockchain technology and the Ethereum platform, non-fungible tokens (NFTs) have emerged as a new class of digital assets. The NFT transfer network exhibits core-periphery structures derived from different partitioning methods, leading to local discrepancies and global diversity. We propose a core-periphery structure characterization method based on Bayesian and stochastic block models (SBMs). This method incorporates prior knowledge to improve the fit of core-periphery structures obtained from various partitioning methods. Additionally, we introduce a locally weighted core-periphery structure aggregation (LWCSA) scheme, which determines local aggregation weights using the minimum description length (MDL) principle. This approach results in a more accurate and representative core-periphery structure. The experimental results indicate that core nodes in the NFT transfer network constitute approximately 2.3-5% of all nodes. Compared to baseline methods, our approach improves the normalized mutual information (NMI) index by 6-10%, demonstrating enhanced structural representation. This study provides a theoretical foundation for further analysis of the NFT market.
随着区块链技术和以太坊平台的兴起,非同质化代币(NFT)已成为一类新的数字资产。NFT 转移网络呈现出源自不同划分方法的核心 - 边缘结构,导致局部差异和全局多样性。我们提出了一种基于贝叶斯和随机块模型(SBM)的核心 - 边缘结构表征方法。该方法纳入先验知识以改善从各种划分方法获得的核心 - 边缘结构的拟合度。此外,我们引入了一种局部加权核心 - 边缘结构聚合(LWCSA)方案,该方案使用最小描述长度(MDL)原则确定局部聚合权重。这种方法产生了更准确且更具代表性的核心 - 边缘结构。实验结果表明,NFT 转移网络中的核心节点约占所有节点的 2.3 - 5%。与基线方法相比,我们的方法将归一化互信息(NMI)指数提高了 6 - 10%,表明结构表示得到了增强。本研究为进一步分析 NFT 市场提供了理论基础。