Christopher Westland J
University of Illinois Chicago, Chicago, USA.
Sci Rep. 2024 Feb 23;14(1):4480. doi: 10.1038/s41598-024-55011-x.
Non-fungible tokens (NFTs) are unique digital assets that exist on a blockchain and have provided new revenue streams for creators. This research investigates NFT market inefficiencies to identify claimed cyclic behavior and cryptocurrency influences on NFT prices. The research found that while linear models are not useful in modeling NFT price series, models that extract periodic behavior can provide explanations and predictions of price behavior. The investigation of autocycles in cryptocurrency and NFT markets did not support the existence of Elliott Wave behavior in any of these blockchain enabled assets. Rather NFT price behavior is strongly tied to the underlying asset and its community of fans. These fans commit to periodic bouts of idiosyncratic trading which cools for a while, and then restarts. The research found no evidence supporting whole market effects across the full price series of individual NFTs. The research strongly supports prior findings that the offsetting movements significantly influence NFT prices and trading volume in Bitcoin and Ether. The research found NFT markets exhibit characteristics resembling a social media platform rather than more traditional asset markets like stock exchanges. It found that traditional linear econometric models cannot predict or explain NFT price series, only that NFT price and volume were weakly correlated. Fractal models consistent with Elliott wave theory do explain some of NFT price behavior, but are not consistent or stable over time. This research confirmed prior research findings that Bitcoin and Ether price movements are correlated with general NFT price and volume series in periods of between 24 and 48 h, with significant numbers of trades into and out of cryptocurrencies at 2 and 8 h.
非同质化代币(NFT)是存在于区块链上的独特数字资产,为创作者提供了新的收入来源。本研究调查了NFT市场的低效率情况,以识别所谓的周期性行为以及加密货币对NFT价格的影响。研究发现,虽然线性模型对NFT价格序列建模并无用处,但提取周期性行为的模型可以对价格行为做出解释和预测。对加密货币和NFT市场中的自循环进行的调查并不支持在任何这些基于区块链的资产中存在艾略特波浪行为。相反,NFT价格行为与基础资产及其粉丝群体紧密相关。这些粉丝会定期进行特殊交易,交易热潮会冷却一段时间,然后再次开始。研究没有发现证据支持个别NFT的整个价格序列存在全市场效应。该研究有力地支持了先前的研究结果,即比特币和以太坊的抵消性波动对NFT价格和交易量有显著影响。研究发现,NFT市场呈现出类似社交媒体平台的特征,而非像证券交易所这样更传统的资产市场。研究发现,传统的线性计量经济模型无法预测或解释NFT价格序列,只是NFT价格和交易量之间的相关性较弱。与艾略特波浪理论一致的分形模型确实能解释一些NFT价格行为,但随着时间推移并不一致或稳定。本研究证实了先前的研究结果,即在24至48小时的时间段内,比特币和以太坊的价格走势与一般NFT价格和交易量序列相关,在2小时和8小时时有大量加密货币的买卖交易。