Suppr超能文献

加密货币时间序列分析中的信息论量化指标

Information Theory Quantifiers in Cryptocurrency Time Series Analysis.

作者信息

Suriano Micaela, Caram Leonidas Facundo, Caiafa Cesar, Merlino Hernán Daniel, Rosso Osvaldo Anibal

机构信息

Departamento de Hidráulica, Facultad de Ingeniería, Universidad de Buenos Aires, Av. Las Heras 2214, Buenos Aires C1127AAR, Argentina.

Laboratorio de Redes y Sistemas Móviles, Departamento de Electrónica, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires C1063ACV, Argentina.

出版信息

Entropy (Basel). 2025 Apr 21;27(4):450. doi: 10.3390/e27040450.

Abstract

This paper investigates the temporal evolution of cryptocurrency time series using information measures such as complexity, entropy, and Fisher information. The main objective is to differentiate between various levels of randomness and chaos. The methodology was applied to 176 daily closing price time series of different cryptocurrencies, from October 2015 to October 2024, with more than 30 days of data and not completely null. Complexity-entropy causality plane (CECP) analysis reveals that daily cryptocurrency series with lengths of two years or less exhibit chaotic behavior, while those longer than two years display stochastic behavior. Most longer series resemble colored noise, with the parameter varying between 0 and 2. Additionally, Natural Language Processing (NLP) analysis identified the most relevant terms in each white paper, facilitating a clustering method that resulted in four distinct clusters. However, no significant characteristics were found across these clusters in terms of the dynamics of the time series. This finding challenges the assumption that project narratives dictate market behavior. For this reason, investment recommendations should prioritize real-time informational metrics over whitepaper content.

摘要

本文使用复杂性、熵和费希尔信息等信息测度来研究加密货币时间序列的时间演变。主要目标是区分不同程度的随机性和混沌性。该方法应用于2015年10月至2024年10月期间176个不同加密货币的日收盘价时间序列,数据超过30天且并非完全为零。复杂性-熵因果平面(CECP)分析表明,长度为两年或更短的加密货币日序列表现出混沌行为,而那些超过两年的序列则表现出随机行为。大多数较长的序列类似于有色噪声,参数 在0到2之间变化。此外,自然语言处理(NLP)分析确定了每篇白皮书最相关的术语,促成了一种聚类方法,该方法产生了四个不同的聚类。然而,就时间序列的动态而言,在这些聚类中未发现显著特征。这一发现挑战了项目叙事决定市场行为的假设。因此,投资建议应优先考虑实时信息指标而非白皮书内容。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/038c/12027155/b56098282404/entropy-27-00450-g001.jpg

相似文献

1
Information Theory Quantifiers in Cryptocurrency Time Series Analysis.
Entropy (Basel). 2025 Apr 21;27(4):450. doi: 10.3390/e27040450.
2
The resilience of cryptocurrency market efficiency to COVID-19 shock.
Physica A. 2022 Dec 1;607:128218. doi: 10.1016/j.physa.2022.128218. Epub 2022 Oct 3.
3
Daily Streamflow of Argentine Rivers Analysis Using Information Theory Quantifiers.
Entropy (Basel). 2024 Jan 9;26(1):0. doi: 10.3390/e26010056.
4
Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market.
Sci Rep. 2019 Feb 5;9(1):1440. doi: 10.1038/s41598-018-37773-3.
7
Information-theoretic measures for nonlinear causality detection: application to social media sentiment and cryptocurrency prices.
R Soc Open Sci. 2020 Sep 16;7(9):200863. doi: 10.1098/rsos.200863. eCollection 2020 Sep.
8
Detecting the chaotic nature in a transitional boundary layer using symbolic information-theory quantifiers.
Phys Rev E. 2017 Nov;96(5-1):052215. doi: 10.1103/PhysRevE.96.052215. Epub 2017 Nov 20.
9
The Cryptocurrency Market in Transition before and after COVID-19: An Opportunity for Investors?
Entropy (Basel). 2022 Sep 19;24(9):1317. doi: 10.3390/e24091317.
10
The Impact of the COVID-19 Pandemic on the Unpredictable Dynamics of the Cryptocurrency Market.
Entropy (Basel). 2021 Sep 20;23(9):1234. doi: 10.3390/e23091234.

引用本文的文献

1
Nonlinear Dynamics and Applications.
Entropy (Basel). 2025 Jun 27;27(7):688. doi: 10.3390/e27070688.

本文引用的文献

1
Daily Streamflow of Argentine Rivers Analysis Using Information Theory Quantifiers.
Entropy (Basel). 2024 Jan 9;26(1):0. doi: 10.3390/e26010056.
2
Shannon Entropy: An Econophysical Approach to Cryptocurrency Portfolios.
Entropy (Basel). 2022 Nov 1;24(11):1583. doi: 10.3390/e24111583.
3
The resilience of cryptocurrency market efficiency to COVID-19 shock.
Physica A. 2022 Dec 1;607:128218. doi: 10.1016/j.physa.2022.128218. Epub 2022 Oct 3.
4
Blockchain Technology, Cryptocurrency: Entropy-Based Perspective.
Entropy (Basel). 2022 Apr 15;24(4):557. doi: 10.3390/e24040557.
5
Cryptocurrency Market Consolidation in 2020-2021.
Entropy (Basel). 2021 Dec 13;23(12):1674. doi: 10.3390/e23121674.
6
The Impact of the COVID-19 Pandemic on the Unpredictable Dynamics of the Cryptocurrency Market.
Entropy (Basel). 2021 Sep 20;23(9):1234. doi: 10.3390/e23091234.
8
Complexity in Economic and Social Systems: Cryptocurrency Market at around COVID-19.
Entropy (Basel). 2020 Sep 18;22(9):1043. doi: 10.3390/e22091043.
9
Network Analysis of Multivariate Transfer Entropy of Cryptocurrencies in Times of Turbulence.
Entropy (Basel). 2020 Jul 11;22(7):760. doi: 10.3390/e22070760.
10
Price Movement Prediction of Cryptocurrencies Using Sentiment Analysis and Machine Learning.
Entropy (Basel). 2019 Jun 14;21(6):589. doi: 10.3390/e21060589.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验