Suriano Micaela, Caram Leonidas Facundo, Caiafa Cesar, Merlino Hernán Daniel, Rosso Osvaldo Anibal
Departamento de Hidráulica, Facultad de Ingeniería, Universidad de Buenos Aires, Av. Las Heras 2214, Buenos Aires C1127AAR, Argentina.
Laboratorio de Redes y Sistemas Móviles, Departamento de Electrónica, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires C1063ACV, Argentina.
Entropy (Basel). 2025 Apr 21;27(4):450. doi: 10.3390/e27040450.
This paper investigates the temporal evolution of cryptocurrency time series using information measures such as complexity, entropy, and Fisher information. The main objective is to differentiate between various levels of randomness and chaos. The methodology was applied to 176 daily closing price time series of different cryptocurrencies, from October 2015 to October 2024, with more than 30 days of data and not completely null. Complexity-entropy causality plane (CECP) analysis reveals that daily cryptocurrency series with lengths of two years or less exhibit chaotic behavior, while those longer than two years display stochastic behavior. Most longer series resemble colored noise, with the parameter varying between 0 and 2. Additionally, Natural Language Processing (NLP) analysis identified the most relevant terms in each white paper, facilitating a clustering method that resulted in four distinct clusters. However, no significant characteristics were found across these clusters in terms of the dynamics of the time series. This finding challenges the assumption that project narratives dictate market behavior. For this reason, investment recommendations should prioritize real-time informational metrics over whitepaper content.
本文使用复杂性、熵和费希尔信息等信息测度来研究加密货币时间序列的时间演变。主要目标是区分不同程度的随机性和混沌性。该方法应用于2015年10月至2024年10月期间176个不同加密货币的日收盘价时间序列,数据超过30天且并非完全为零。复杂性-熵因果平面(CECP)分析表明,长度为两年或更短的加密货币日序列表现出混沌行为,而那些超过两年的序列则表现出随机行为。大多数较长的序列类似于有色噪声,参数 在0到2之间变化。此外,自然语言处理(NLP)分析确定了每篇白皮书最相关的术语,促成了一种聚类方法,该方法产生了四个不同的聚类。然而,就时间序列的动态而言,在这些聚类中未发现显著特征。这一发现挑战了项目叙事决定市场行为的假设。因此,投资建议应优先考虑实时信息指标而非白皮书内容。