Keskin Z, Aste T
Department of Computer Science & Centre for Blockchain Technologies, University College London, Gower Street, WC1E 6EA London, UK.
Department of Physics and Astronomy, University College London, Gower Street, WC1E 6EA London, UK.
R Soc Open Sci. 2020 Sep 16;7(9):200863. doi: 10.1098/rsos.200863. eCollection 2020 Sep.
Information transfer between time series is calculated using the asymmetric information-theoretic measure known as transfer entropy. Geweke's autoregressive formulation of Granger causality is used to compute linear transfer entropy, and Schreiber's general, non-parametric, information-theoretic formulation is used to quantify nonlinear transfer entropy. We first validate these measures against synthetic data. Then we apply these measures to detect statistical causality between social sentiment changes and cryptocurrency returns. We validate results by performing permutation tests by shuffling the time series, and calculate the -score. We also investigate different approaches for partitioning in non-parametric density estimation which can improve the significance. Using these techniques on sentiment and price data over a 48-month period to August 2018, for four major cryptocurrencies, namely bitcoin (BTC), ripple (XRP), litecoin (LTC) and ethereum (ETH), we detect significant information transfer, on hourly timescales, with greater net information transfer from sentiment to price for XRP and LTC, and instead from price to sentiment for BTC and ETH. We report the scale of nonlinear statistical causality to be an order of magnitude larger than the linear case.
时间序列之间的信息传递是使用一种称为转移熵的非对称信息论度量来计算的。采用盖维克对格兰杰因果关系的自回归公式来计算线性转移熵,施赖伯的通用、非参数信息论公式则用于量化非线性转移熵。我们首先针对合成数据验证这些度量。然后应用这些度量来检测社会情绪变化与加密货币回报之间的统计因果关系。我们通过对时间序列进行重排来执行置换检验以验证结果,并计算z分数。我们还研究了非参数密度估计中的不同划分方法,这些方法可以提高显著性。运用这些技术,针对截至2018年8月的48个月期间的情绪和价格数据,对四种主要加密货币,即比特币(BTC)、瑞波币(XRP)、莱特币(LTC)和以太坊(ETH),我们在小时时间尺度上检测到显著的信息传递,对于XRP和LTC,从情绪到价格的净信息传递更大,而对于BTC和ETH,则是从价格到情绪。我们报告非线性统计因果关系的规模比线性情况大一个数量级。