Tang Yong, Wei Yuxin, Sun Tong, Bai Jingjing, Luo Fangqiong, Qiu Huarong, Li Yiming, Yuan Wei, Zhang Shiwei
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China.
Micromachines (Basel). 2025 Mar 25;16(4):370. doi: 10.3390/mi16040370.
The evolution of 5G technology necessitates effective thermal management strategies for compact, high-power devices. The potential of aluminum-based vapor chambers (VCs) as thermal management solutions is recognized, yet the heat transfer performance is limited by the capillary constraints of the wick structures. This study proposes a laser-sintered composite wick to address this limitation. Experimental evaluations were conducted on microgroove wicks (MW) and groove-spiral woven mesh composite wicks (GSCW), utilizing ethanol and acetone as the working fluids. The MW, characterized by a laser spacing of 0.2 mm and two passes, demonstrated a capillary rise of 52.90 mm, while the spiral woven mesh (SWM) achieved a rise of 61.48 mm. Notably, the GSCW surpassed both configurations, reaching a capillary height of 84.57 mm and a capillary parameter (K/Reff) of 2.769 μm, which corresponds to increases of 90.15% and 43.76% over the MW and SWM, respectively. This study demonstrates an effective approach to enhancing the capillary performance of aluminum wicks, which provides valuable insights for the design of composite wicks, particularly for applications in ultra-thin aluminum VC.
5G技术的发展要求为紧凑的高功率设备制定有效的热管理策略。铝基微通道热沉作为热管理解决方案的潜力已得到认可,但其传热性能受到芯体结构毛细作用的限制。本研究提出了一种激光烧结复合芯体来解决这一限制。以乙醇和丙酮作为工作流体,对微槽芯体(MW)和槽-螺旋编织网复合芯体(GSCW)进行了实验评估。MW的激光间距为0.2 mm,经过两道烧结,其毛细上升高度为52.90 mm,而螺旋编织网(SWM)的毛细上升高度为61.48 mm。值得注意的是,GSCW的表现超过了这两种结构,其毛细高度达到84.57 mm,毛细参数(K/Reff)为2.769 μm,分别比MW和SWM提高了90.15%和43.76%。本研究展示了一种提高铝芯体毛细性能的有效方法,为复合芯体的设计提供了有价值的见解,特别是在超薄铝微通道热沉中的应用。