文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

HeSARIC:一种用于结构健康监测的具有增强现实表示的异构网络物理机器人集群框架。

HeSARIC: A Heterogeneous Cyber-Physical Robotic Swarm Framework for Structural Health Monitoring with Augmented Reality Representation.

作者信息

Fath Alireza, Sauter Christoph, Liu Yi, Gamble Brandon, Burns Dylan, Trombley Evan, Sathi Sai Krishna Reddy, Xia Tian, Huston Dryver

机构信息

Department of Mechanical Engineering, University of Vermont, Burlington, VT 05405, USA.

Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.

出版信息

Micromachines (Basel). 2025 Apr 13;16(4):460. doi: 10.3390/mi16040460.


DOI:10.3390/mi16040460
PMID:40283335
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12029630/
Abstract

This study proposes a cyber-physical framework for the integration of a heterogeneous swarm of robots, sensors, microrobots, and AR for structural health monitoring and confined space inspection based on the application's unique challenges. The structural issues investigated are cracks in the walls, deformation of the structures, and damage to the culverts and devices commonly used in buildings. The PC and augmented reality interfaces are incorporated for human-robot collaboration to provide the necessary information to the human user while teleoperating the robots. The proposed interfaces use edge computing and machine learning to enhance operator interactions and to improve damage detection in confined spaces and challenging environments. The proposed swarm inspection framework is called HeSARIC.

摘要

本研究基于应用的独特挑战,提出了一种用于集成异构机器人、传感器、微型机器人和增强现实(AR)的网络物理框架,以进行结构健康监测和受限空间检查。所研究的结构问题包括墙壁裂缝、结构变形以及建筑物中常用的涵洞和设备损坏。个人计算机(PC)和增强现实接口被纳入人机协作,以便在远程操作机器人时向人类用户提供必要信息。所提出的接口使用边缘计算和机器学习来增强操作员交互,并改善在受限空间和具有挑战性环境中的损伤检测。所提出的群体检查框架称为HeSARIC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/07b567b85a27/micromachines-16-00460-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/d61262bc5d24/micromachines-16-00460-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/4373cbd2d55e/micromachines-16-00460-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/b4afbaff671e/micromachines-16-00460-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/4ee3f8aef542/micromachines-16-00460-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/7fc23765f014/micromachines-16-00460-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/21d8f54b81e9/micromachines-16-00460-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/f9692a1ba002/micromachines-16-00460-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/b9397a6e6b39/micromachines-16-00460-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/370eb4e8a0f0/micromachines-16-00460-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/01fe19a0eea2/micromachines-16-00460-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/8618e9376bc4/micromachines-16-00460-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/7dcc9d6d573c/micromachines-16-00460-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/d2819397962a/micromachines-16-00460-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/8488f52386a2/micromachines-16-00460-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/da8e9e828c29/micromachines-16-00460-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/6699e2658abe/micromachines-16-00460-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/1d2ffa3998e0/micromachines-16-00460-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/208d2f8fcd48/micromachines-16-00460-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/f861e3b68c18/micromachines-16-00460-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/5b870425918f/micromachines-16-00460-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/b9f961b1318a/micromachines-16-00460-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/8a07b7fd4e8f/micromachines-16-00460-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/8b4fe74159b1/micromachines-16-00460-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/7cadae3aea76/micromachines-16-00460-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/e9e6ad82efdb/micromachines-16-00460-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/d58d73618e68/micromachines-16-00460-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/5b663995d31b/micromachines-16-00460-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/86681410011f/micromachines-16-00460-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/861678ac11bd/micromachines-16-00460-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/07b567b85a27/micromachines-16-00460-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/d61262bc5d24/micromachines-16-00460-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/4373cbd2d55e/micromachines-16-00460-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/b4afbaff671e/micromachines-16-00460-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/4ee3f8aef542/micromachines-16-00460-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/7fc23765f014/micromachines-16-00460-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/21d8f54b81e9/micromachines-16-00460-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/f9692a1ba002/micromachines-16-00460-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/b9397a6e6b39/micromachines-16-00460-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/370eb4e8a0f0/micromachines-16-00460-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/01fe19a0eea2/micromachines-16-00460-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/8618e9376bc4/micromachines-16-00460-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/7dcc9d6d573c/micromachines-16-00460-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/d2819397962a/micromachines-16-00460-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/8488f52386a2/micromachines-16-00460-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/da8e9e828c29/micromachines-16-00460-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/6699e2658abe/micromachines-16-00460-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/1d2ffa3998e0/micromachines-16-00460-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/208d2f8fcd48/micromachines-16-00460-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/f861e3b68c18/micromachines-16-00460-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/5b870425918f/micromachines-16-00460-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/b9f961b1318a/micromachines-16-00460-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/8a07b7fd4e8f/micromachines-16-00460-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/8b4fe74159b1/micromachines-16-00460-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/7cadae3aea76/micromachines-16-00460-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/e9e6ad82efdb/micromachines-16-00460-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/d58d73618e68/micromachines-16-00460-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/5b663995d31b/micromachines-16-00460-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/86681410011f/micromachines-16-00460-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/861678ac11bd/micromachines-16-00460-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b1/12029630/07b567b85a27/micromachines-16-00460-g030.jpg

相似文献

[1]
HeSARIC: A Heterogeneous Cyber-Physical Robotic Swarm Framework for Structural Health Monitoring with Augmented Reality Representation.

Micromachines (Basel). 2025-4-13

[2]
Computer Vision and Augmented Reality for Human-Centered Fatigue Crack Inspection.

Sensors (Basel). 2024-6-6

[3]
A Review and Qualitative Meta-Analysis of Digital Human Modeling and Cyber-Physical-Systems in Ergonomics 4.0.

IISE Trans Occup Ergon Hum Factors. 2021

[4]
MARSBot: A Bristle-Bot Microrobot with Augmented Reality Steering Control for Wireless Structural Health Monitoring.

Micromachines (Basel). 2024-1-29

[5]
Trustable Environmental Monitoring by Means of Sensors Networks on Swarming Autonomous Marine Vessels and Distributed Ledger Technology.

Front Robot AI. 2020-5-28

[6]
Integrated system architecture with mixed-reality user interface for virtual-physical hybrid swarm simulations.

Sci Rep. 2023-9-7

[7]
Augmented Reality (AR) for Surgical Robotic and Autonomous Systems: State of the Art, Challenges, and Solutions.

Sensors (Basel). 2023-7-6

[8]
Augmented reality in robotic assisted orthopaedic surgery: A pilot study.

J Biomed Inform. 2021-8

[9]
Switchable Glass Enabled Contextualization for a Cyber-Physical Safe and Interactive Spatial Augmented Reality PCBA Manufacturing Inspection System.

Sensors (Basel). 2020-7-31

[10]
Drivable path detection for a mobile robot with differential drive using a deep Learning based segmentation method for indoor navigation.

PeerJ Comput Sci. 2024-11-19

本文引用的文献

[1]
MARSBot: A Bristle-Bot Microrobot with Augmented Reality Steering Control for Wireless Structural Health Monitoring.

Micromachines (Basel). 2024-1-29

[2]
Augmented Reality (AR) for Surgical Robotic and Autonomous Systems: State of the Art, Challenges, and Solutions.

Sensors (Basel). 2023-7-6

[3]
Study of Human Thermal Comfort for Cyber-Physical Human Centric System in Smart Homes.

Sensors (Basel). 2020-1-9

[4]
Pain mechanisms: a new theory.

Science. 1965-11-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索