Sawant Shruti S, Ahmed Maizbha Uddin, Gantala Nathan-Gautham, Chiu Caitlin, Qu Li, Zhou Qi
Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.
Pharmaceutics. 2025 Mar 24;17(4):405. doi: 10.3390/pharmaceutics17040405.
is one of the major pathogens that cause respiratory infections. The rise of antimicrobial resistance has prompted a need for alternatives to conventional antibiotics. Bacteriophages (phages), natural predators of bacteria, are gaining interest as an alternative therapeutic option against drug-resistant infections. However, phage viability can be lost during manufacturing and delivery. Recent studies show that phages can be taken up by lung epithelial cells, which makes fewer phages available for antibacterial action against extracellular bacteria in the airways. In this study, we encapsulated phages in liposomes using thin film hydration. The effect of processing conditions and phage loading titer on the phage encapsulation and viability was studied. The impact of nebulization on phage viability was tested using an air-jet nebulizer (PARI-LC Plus). Phage cellular uptake was evaluated using an in vitro H441 lung epithelial cell model, grown at the air-liquid interface. Our results demonstrate favorable encapsulation (58 ± 6.02%) can be achieved with minimum loss in phage titer (0.64 ± 0.21 log) by using a low phage titer for hydration. The liposomal formulations exhibited controlled release of phages over 10 h. The formulation also reduced the loss of phage viability during nebulization from 1.55 ± 0.04 log (for phage suspension) to 1.08 ± 0.05 log (for phage liposomes). Encapsulation of phages in liposomes enabled a two-fold reduction in phage cellular uptake and longer extracellular phage retention in the human lung epithelial cell monolayer. Our results indicate that liposomal encapsulation favors phage protection and improves phage availability for antibacterial activity. These findings highlight the potential of liposomes for inhaled phage delivery.
是引起呼吸道感染的主要病原体之一。抗菌药物耐药性的上升促使人们需要传统抗生素的替代品。噬菌体作为细菌的天然捕食者,作为对抗耐药性感染的替代治疗选择正受到越来越多的关注。然而,噬菌体的活力在制造和递送过程中可能会丧失。最近的研究表明,噬菌体可以被肺上皮细胞摄取,这使得可用于对抗气道中细胞外细菌的抗菌作用的噬菌体减少。在本研究中,我们使用薄膜水化法将噬菌体包裹在脂质体中。研究了加工条件和噬菌体装载滴度对噬菌体包封和活力的影响。使用空气喷射雾化器(PARI-LC Plus)测试雾化对噬菌体活力的影响。使用在气液界面生长的体外H441肺上皮细胞模型评估噬菌体的细胞摄取。我们的结果表明,通过使用低噬菌体滴度进行水化,可以实现良好的包封率(58±6.02%),同时噬菌体滴度损失最小(0.64±0.21 log)。脂质体制剂在10小时内显示出噬菌体的控释。该制剂还将雾化过程中噬菌体活力的损失从1.55±0.04 log(对于噬菌体悬浮液)降低到1.08±0.05 log(对于噬菌体脂质体)。将噬菌体包裹在脂质体中可使噬菌体细胞摄取减少两倍,并使噬菌体在人肺上皮细胞单层中的细胞外保留时间延长。我们的结果表明,脂质体包裹有利于噬菌体的保护,并提高了噬菌体用于抗菌活性的可用性。这些发现突出了脂质体用于吸入噬菌体递送的潜力。