Suppr超能文献

在混合现实环境中收集的帕金森病语音、言语和语言生物标志物分析。

Analysis of Voice, Speech, and Language Biomarkers of Parkinson's Disease Collected in a Mixed Reality Setting.

作者信息

Dudek Milosz, Hemmerling Daria, Kaczmarska Marta, Stepien Joanna, Daniol Mateusz, Wodzinski Marek, Wojcik-Pedziwiatr Magdalena

机构信息

Department of Measurement and Electronics, AGH University of Krakow, 30-059 Krakow, Poland.

Department of Neurology, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland.

出版信息

Sensors (Basel). 2025 Apr 10;25(8):2405. doi: 10.3390/s25082405.

Abstract

This study explores an innovative approach to early Parkinson's disease (PD) detection by analyzing speech data collected using a mixed reality (MR) system. A total of 57 Polish participants, including PD patients and healthy controls, performed five speech tasks while using an MR head-mounted display (HMD). Speech data were recorded and analyzed to extract acoustic and linguistic features, which were then evaluated using machine learning models, including logistic regression, support vector machines (SVMs), random forests, AdaBoost, and XGBoost. The XGBoost model achieved the best performance, with an F1-score of 0.90 ± 0.05 in the story-retelling task. Key features such as MFCCs (mel-frequency cepstral coefficients), spectral characteristics, RASTA-filtered auditory spectrum, and local shimmer were identified as significant in detecting PD-related speech alterations. Additionally, state-of-the-art deep learning models (wav2vec2, HuBERT, and WavLM) were fine-tuned for PD detection. HuBERT achieved the highest performance, with an F1-score of 0.94 ± 0.04 in the diadochokinetic task, demonstrating the potential of deep learning to capture complex speech patterns linked to neurodegenerative diseases. This study highlights the effectiveness of combining MR technology for speech data collection with advanced machine learning (ML) and deep learning (DL) techniques, offering a non-invasive and high-precision approach to PD diagnosis. The findings hold promise for broader clinical applications, advancing the diagnostic landscape for neurodegenerative disorders.

摘要

本研究探索了一种通过分析使用混合现实(MR)系统收集的语音数据来早期检测帕金森病(PD)的创新方法。共有57名波兰参与者,包括PD患者和健康对照者,在使用MR头戴式显示器(HMD)时执行了五项语音任务。记录并分析语音数据以提取声学和语言特征,然后使用包括逻辑回归、支持向量机(SVM)、随机森林、AdaBoost和XGBoost在内的机器学习模型对其进行评估。XGBoost模型表现最佳,在故事复述任务中的F1分数为0.90±0.05。诸如梅尔频率倒谱系数(MFCC)、频谱特征、RASTA滤波听觉频谱和局部闪烁等关键特征被确定为检测与PD相关的语音改变的重要因素。此外,对最先进的深度学习模型(wav2vec2、HuBERT和WavLM)进行了针对PD检测的微调。HuBERT表现最佳,在连续发声任务中的F1分数为0.94±0.04,证明了深度学习捕捉与神经退行性疾病相关的复杂语音模式的潜力。本研究强调了将MR技术用于语音数据收集与先进的机器学习(ML)和深度学习(DL)技术相结合的有效性,为PD诊断提供了一种非侵入性且高精度的方法。这些发现有望在更广泛的临床应用中得到应用,推动神经退行性疾病的诊断格局发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a413/12031132/f79900b5fb68/sensors-25-02405-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验