Suppr超能文献

一种在动态低地球轨道网络中具有预测增强功能的加速最大流算法。

An Accelerated Maximum Flow Algorithm with Prediction Enhancement in Dynamic LEO Networks.

作者信息

Sheng Jiayin, Guan Xinjie, Yang Fuliang, Wan Xili

机构信息

College of Computer and Information Engineering, Nanjing Tech University, Nanjing 211816, China.

出版信息

Sensors (Basel). 2025 Apr 17;25(8):2555. doi: 10.3390/s25082555.

Abstract

Efficient data transmission in low Earth orbit (LEO) satellite networks is critical for supporting real-time global communication, Earth observation, and numerous data-intensive space missions. A fundamental challenge in these networks involves solving the maximum flow problem, which determines the optimal data throughput across highly dynamic topologies with limited onboard energy and data processing capability. Traditional algorithms often fall short in these environments due to their high computational costs and inability to adapt to frequent topological changes or fluctuating link capacities. This paper introduces an accelerated maximum flow algorithm specifically designed for dynamic LEO networks, leveraging a prediction-enhanced approach to improve both speed and adaptability. The proposed algorithm integrates a novel energy-time expanded graph (e-TEG) framework, which jointly models satellite-specific constraints including time-varying inter-satellite visibility, limited onboard processing capacities, and dynamic link capacities. In addition, a learning-augmented warm-start strategy is introduced to enhance the Ford-Fulkerson algorithm. It generates near-optimal initial flows based on historical network states, which reduces the number of augmentation steps required and accelerates computation under dynamic conditions. Theoretical analyses confirm the correctness and time efficiency of the proposed approach. Evaluation results validate that the prediction-enhanced approach achieves up to a 32.2% reduction in computation time compared to conventional methods, particularly under varying storage capacity and network topologies. These results demonstrate the algorithm's potential to support high-throughput, efficient data transmission in future satellite communication systems.

摘要

在低地球轨道(LEO)卫星网络中进行高效数据传输对于支持实时全球通信、地球观测以及众多数据密集型太空任务至关重要。这些网络中的一个基本挑战涉及解决最大流问题,该问题决定了在具有有限机载能量和数据处理能力的高度动态拓扑结构上的最优数据吞吐量。由于传统算法计算成本高且无法适应频繁的拓扑变化或波动的链路容量,它们在这些环境中往往表现不佳。本文介绍了一种专门为动态LEO网络设计的加速最大流算法,利用预测增强方法来提高速度和适应性。所提出的算法集成了一种新颖的能量 - 时间扩展图(e - TEG)框架,该框架联合对特定于卫星的约束进行建模,包括随时间变化的卫星间可见性、有限的机载处理能力和动态链路容量。此外,引入了一种学习增强的热启动策略来改进福特 - 富尔克森算法。它基于历史网络状态生成接近最优的初始流,这减少了所需的增广步骤数量,并在动态条件下加速了计算。理论分析证实了所提出方法的正确性和时间效率。评估结果验证了与传统方法相比,预测增强方法在计算时间上最多可减少32.2%,特别是在不同存储容量和网络拓扑结构下。这些结果证明了该算法在未来卫星通信系统中支持高吞吐量、高效数据传输的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b324/12031580/2ba0835a4f81/sensors-25-02555-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验