Chen Jingjuan, Bao Mingyi, Zhang Chengguo, Pan Dong, Chen Yanting, Xu Yongteng, Zhou Feng, Tang Yamei
Department of Neurology, First People's Hospital of Foshan, Foshan, China.
Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
CNS Neurosci Ther. 2025 Apr;31(4):e70402. doi: 10.1111/cns.70402.
Hemorrhagic transformation (HT) is a critical complication in acute ischemic stroke (AIS) patients with atrial fibrillation (AF) awaiting anticoagulation reinitiation. No reliable predictive model exists for assessing HT risk for these patients. Clinical decisions typically rely on NIHSS score and infarct size; however, other relevant risk factors remain insufficiently explored. This study aimed to develop and validate a predictive model for assessing the risk of HT in AIS patients with AF from stroke onset to anticoagulation therapy reinitiation.
This retrospective study included AIS patients with AF from two comprehensive medical centers in China. The primary outcome was HT postinfarction confirmed with CT/MRI before anticoagulation reinitiation. Significant predictors were identified via LASSO regression in the training set, followed by multivariable logistic regression for developing a predictive model and generating the nomogram. Model performance was validated in a separate external cohort.
In the training cohort (n = 629), 174 patients (27.7%) developed HT. LASSO logistic regression revealed that infarct size, NIHSS score, diabetes mellitus, reperfusion therapy, left ventricular ejection fraction, and prehospital antihypertensive treatment were significant HT predictors. In the external validation cohort (n = 236), 61 patients (25.8%) developed HT. The nomogram exhibited strong predictive performance, with AUCs of 0.720 in the training set and 0.747 in the validation set.
The proposed nomogram offers a practical tool for predicting HT risk in AIS patients with AF before anticoagulation reinitiation, potentially supporting informed clinical decision-making, though further validation is required.
出血性转化(HT)是等待重新开始抗凝治疗的急性缺血性卒中(AIS)合并心房颤动(AF)患者的一种关键并发症。目前尚无可靠的预测模型来评估这些患者发生HT的风险。临床决策通常依赖于美国国立卫生研究院卒中量表(NIHSS)评分和梗死灶大小;然而,其他相关危险因素仍未得到充分探索。本研究旨在建立并验证一种预测模型,用于评估AIS合并AF患者从卒中发作到重新开始抗凝治疗期间发生HT的风险。
这项回顾性研究纳入了来自中国两家综合医疗中心的AIS合并AF患者。主要结局是在重新开始抗凝治疗前通过CT/MRI确认的梗死后HT。在训练集中通过LASSO回归确定显著预测因素,然后进行多变量逻辑回归以建立预测模型并生成列线图。在一个单独的外部队列中验证模型性能。
在训练队列(n = 629)中,174例患者(27.7%)发生了HT。LASSO逻辑回归显示,梗死灶大小、NIHSS评分、糖尿病、再灌注治疗、左心室射血分数和院前降压治疗是HT的显著预测因素。在外部验证队列(n = 236)中,61例患者(25.8%)发生了HT。列线图表现出强大的预测性能,训练集的曲线下面积(AUC)为0.720,验证集的AUC为0.747。
所提出的列线图为预测AIS合并AF患者在重新开始抗凝治疗前发生HT的风险提供了一种实用工具,可能有助于临床做出明智的决策,不过仍需进一步验证。