Liu Ruotong, Yang Qin, Pang Yu, Li Hongdong, Liu Yanru, Wang Weizhou, Wang Zuochao, Chang Rui, Tian Xiaofeng, Lai Jianping, Wang Lei
Key Laboratory of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
Small. 2025 Jun;21(24):e2500518. doi: 10.1002/smll.202500518. Epub 2025 Apr 26.
High entropy hydroxide is a promising catalyst for the oxygen evolution reaction (OER) due to its high entropy effect as well as unique structure. Whereas high preparation costs and the problem of competing chlorine evolution reaction in seawater electrolysis pose challenges for industrial applications. Herein, high-entropy FeCoNiMnMo-OH nanosheets are prepared on nickel foam substrate via a facile one-step room-temperature corrosion engineering strategy. The unique morphology can effectively increase the active sites and enrich OH in the cavity composed of the nanosheets, which significantly increases the local alkalinity and accelerates the actual reaction rate, combined with the inherent synergistic effect of multiple elements and structural stability of high-entropy system. These combined advantages enable exceptional OER performance in both alkaline electrolyte (247 mV at 100 mA cm) and alkaline seawater (287 mV at 100 mA cm). Furthermore, it also shows excellent long-term stability (stable OER activity at 100/500 mA cm for 100 h) across different media, demonstrating remarkable durability and chloride corrosion. This study establishes a material design paradigm for developing cost-effective, high-performance multi-metallic hydroxides through corrosion engineering, providing new insights into overcoming the activity-stability-cost trilemma in seawater electrolysis systems.
高熵氢氧化物因其高熵效应以及独特的结构,是一种很有前景的析氧反应(OER)催化剂。然而,高制备成本以及海水电解中竞争性析氯反应的问题给工业应用带来了挑战。在此,通过一种简便的一步室温腐蚀工程策略,在泡沫镍基底上制备了高熵FeCoNiMnMo-OH纳米片。这种独特的形貌能够有效增加活性位点,并在由纳米片构成的空腔中富集OH,结合多种元素固有的协同效应和高熵体系的结构稳定性,显著提高了局部碱度并加快了实际反应速率。这些综合优势使得其在碱性电解液(100 mA cm时为247 mV)和碱性海水中(100 mA cm时为287 mV)均表现出优异的OER性能。此外,它在不同介质中还表现出出色的长期稳定性(在100/500 mA cm下稳定的OER活性达100小时),展现出卓越的耐久性和抗氯腐蚀性。本研究通过腐蚀工程建立了一种开发具有成本效益的高性能多金属氢氧化物的材料设计范例,为克服海水电解系统中的活性-稳定性-成本三难困境提供了新的见解。