Shahzad Nabeel, Chatha Shahzad Ali Shahid, Hussain Riaz, Hussain Shahid, Iqbal Javed, Adnan Muhammad
Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan.
Department of Chemistry, University of Okara, Okara, 56300, Pakistan.
J Fluoresc. 2025 Apr 26. doi: 10.1007/s10895-025-04309-8.
Efficient hole-transporting materials (HTMs) are important for improving the stability and performance of all-small-molecules organic solar cells (ASM-OSCs) and perovskite solar cells (PSCs). However, low photovoltaic efficiencies, due to challenges in the designing of small molecular electron donors (SMEDs) with ideal energy levels, light absorption, and optoelectronic properties, hinder their widespread usage. This study presents an end-capped molecular engineering strategy to develop highly efficient HTMs for PSCs and donor materials for OSCs. The approach involves integrating acceptor-anchor groups via a thiophene spacer into the anthanthrone (ANT) core with triphenylamine side groups, leading to a series of six newly designed HTMs (AZU1-AZU6). Quantum simulations employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods were conducted to analyze their electronic and photophysical properties. The designed HTMs exhibit an impressive intrinsic charge transfer of 90% and small exciton binding energy (0.11-0.44 eV), facilitating efficient charge separation. The HOMO energy levels of the designed HTMs (- 4.96 to - 5.01 eV) show significant stabilization compared to the reference molecule (- 4.82 eV), promoting better energy level alignment with the perovskite absorber and PCBM polymer. Optical analysis reveals a broad and transparent absorption profile across the visible spectrum (573-737 nm in solvent), minimizing thermalization losses and optimizing light harvesting. The designed HTMs also exhibit smaller hole reorganization energies (0.1427-0.1513 eV) and higher transfer integrals (0.2251-0.2484), suggesting superior hole mobility. Moreover, their higher solvation-free energy values (-22.54 to -32 kJ/mol) indicate enhanced solubility and surface-wetting properties. Notably, the designed HTMs achieve higher open-circuit voltage (V) values (1.57-1.62 V) compared to the reference (1.42 V), underscoring their potential for improved photovoltaic performance. Overall, this study highlights the promising role of ANT-based HTMs in advancing PSC and OSC technology through enhanced charge dynamics and optimized energy levels.
高效空穴传输材料(HTMs)对于提高全小分子有机太阳能电池(ASM-OSCs)和钙钛矿太阳能电池(PSCs)的稳定性和性能至关重要。然而,由于在设计具有理想能级、光吸收和光电性能的小分子电子给体(SMEDs)方面存在挑战,导致光伏效率较低,阻碍了它们的广泛应用。本研究提出了一种封端分子工程策略,以开发用于PSCs的高效HTMs和用于OSCs的给体材料。该方法包括通过噻吩间隔基将受体锚定基团整合到带有三苯胺侧基的蒽醌(ANT)核心中,从而得到一系列六种新设计的HTMs(AZU1-AZU6)。采用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)方法进行量子模拟,以分析它们的电子和光物理性质。所设计的HTMs表现出令人印象深刻的90%的固有电荷转移和较小的激子结合能(0.11-0.44 eV),有利于高效电荷分离。与参考分子(-4.82 eV)相比,所设计的HTMs的最高占据分子轨道(HOMO)能级(-4.96至-5.01 eV)显示出显著的稳定性,促进了与钙钛矿吸收体和PCBM聚合物更好的能级匹配。光学分析揭示了在可见光谱范围内(在溶剂中为573-737 nm)具有宽且透明的吸收谱,使热化损失最小化并优化了光捕获。所设计的HTMs还表现出较小的空穴重组能(0.1427-0.1513 eV)和较高的转移积分(0.2251-0.2484),表明具有优异的空穴迁移率。此外,它们较高的无溶剂化能值(-22.54至-32 kJ/mol)表明溶解性和表面润湿性增强。值得注意的是,与参考物(1.42 V)相比,所设计的HTMs实现了更高的开路电压(V)值(1.57-1.62 V),突出了它们在改善光伏性能方面的潜力。总体而言,本研究强调了基于ANT的HTMs通过增强电荷动力学和优化能级在推进PSC和OSC技术方面的重要作用。