Taouali Walid, Azazi Amel, Hassani Rym, El-Araby Entesar H, Alimi Kamel
Research Laboratory of Asymmetric Synthesis and Molecular Engineering of Materials for Organic Electronic (LR18ES19), Department of Physics, Faculty of Sciences of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia.
Department of Physical Sciences, Physics Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia.
Polymers (Basel). 2025 Jan 5;17(1):115. doi: 10.3390/polym17010115.
This paper explores a novel group of D-π-A configurations that has been specifically created for organic solar cell applications. In these material compounds, the phenothiazine, the furan, and two derivatives of the thienyl-fused IC group act as the donor, the π-conjugated spacer, and the end-group acceptors, respectively. We assess the impact of substituents by introducing bromine atoms at two potential substitution sites on each end-group acceptor (EG1 and EG2). With the donor and π-bridge held constant, we have employed density functional theory and time-dependent DFT simulations to explore the photophysical and optoelectronic properties of tailored compounds (M1-M6). We have demonstrated how structural modifications influence the optoelectronic properties of materials for organic solar cells. Moreover, all proposed compounds exhibit a greater V exceeding 1.5 V, a suitable HOMO-LUMO energy gap (2.14-2.30 eV), and higher dipole moments (9.23-10.90 D). Various decisive key factors that are crucial for exploring the properties of tailored compounds-frontier molecular orbitals, transition density matrix, electrostatic potential, open-circuit voltage, maximum absorption, reduced density gradient, and charge transfer length (D)-were also explored. Our analysis delivers profound insights into the design principles of optimizing the performance of organic solar cell applications based on halogenated material compounds.
本文探索了专门为有机太阳能电池应用设计的一类新型D-π-A结构。在这些材料化合物中,吩噻嗪、呋喃以及噻吩稠合IC基团的两种衍生物分别充当供体、π共轭间隔基和端基受体。我们通过在每个端基受体(EG1和EG2)的两个潜在取代位点引入溴原子来评估取代基的影响。在供体和π桥保持不变的情况下,我们采用密度泛函理论和含时密度泛函理论模拟来探究定制化合物(M1-M6)的光物理和光电性质。我们展示了结构修饰如何影响有机太阳能电池材料的光电性质。此外,所有提出的化合物都表现出超过1.5 V的更大电压、合适的HOMO-LUMO能隙(2.14-2.30 eV)以及更高的偶极矩(9.23-10.90 D)。还探讨了探索定制化合物性质的各种关键决定因素——前沿分子轨道、跃迁密度矩阵、静电势、开路电压、最大吸收、约化密度梯度和电荷转移长度(D)。我们的分析为基于卤化材料化合物优化有机太阳能电池应用性能的设计原则提供了深刻见解。