Gan Yuyang, Cai Yimin, Huang Song, Li Xiaowei, Feng Wen, Yuan Lihua
College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.
Molecules. 2025 Mar 30;30(7):1533. doi: 10.3390/molecules30071533.
Nitrogen donor-based ligands are highly promising extractants for palladium separation from high-level liquid waste (HLLW). However, the electronic effect of these ligands, a critical factor influencing their complexation ability with Pd(II), remains largely unexplored. Herein, three picolinamide-based ligands were designed and synthesized, each featuring substituents with distinct electronic effects at the -position of the pyridine (electro-donating methoxyl group for L-I, hydrogen for L-II, and electro-withdrawing ester group for L-III). The concurrent processes of Pd(II) coordination and ligand protonation enable the manipulation of pyridine nitrogen electronegativity, resulting in a tunable Pd(II) extraction performance. Notably, L-I exhibits the highest extraction efficiency at low acidities (≤1 M HNO) but the lowest extraction at high acidities (≥3 M HNO), whereas L-III shows the poorest efficiency at low acidities but the best performance at high acidities. The Job plot analysis and ESI-HRMS results reveal a 1:1 and 2:1 (L/Pd) stoichiometry in the Pd(II) complexation process. The single crystal X-ray analysis of Pd(NO)(L-II) complex confirms a four-coordinated Pd(II) center, with two pyridine nitrogen atoms and two monodentate nitrate oxygens forming a quadrangular geometry. Density functional theory (DFT) calculations further indicate that the formation of 2:1 (L/Pd) complexes is energetically favored, and the stronger basicity of the nitrogen atoms correlates with a higher Pd(II) binding affinity and increased susceptibility to protonation.
基于氮供体的配体是从高放废液(HLLW)中分离钯的极具前景的萃取剂。然而,这些配体的电子效应,这一影响其与Pd(II)络合能力的关键因素,在很大程度上仍未得到充分研究。在此,设计并合成了三种基于吡啶甲酰胺的配体,每种配体在吡啶的α位具有不同电子效应的取代基(L-I为供电子的甲氧基,L-II为氢,L-III为吸电子的酯基)。Pd(II)配位和配体质子化的同时过程能够控制吡啶氮的电负性,从而产生可调的Pd(II)萃取性能。值得注意的是,L-I在低酸度(≤1 M HNO₃)下表现出最高的萃取效率,但在高酸度(≥3 M HNO₃)下萃取效率最低,而L-III在低酸度下效率最差,但在高酸度下表现最佳。Job曲线分析和ESI-HRMS结果揭示了Pd(II)络合过程中1:1和2:1(L/Pd)的化学计量比。Pd(NO₃)(L-II)络合物的单晶X射线分析证实了一个四配位的Pd(II)中心,两个吡啶氮原子和两个单齿硝酸根氧原子形成一个四边形结构。密度泛函理论(DFT)计算进一步表明,2:1(L/Pd)络合物的形成在能量上更有利,氮原子的碱性越强,与更高的Pd(II)结合亲和力和更高的质子化敏感性相关。