Suppr超能文献

在高级别非肌层浸润性膀胱癌患者中,人工智能驱动的预测生物标志物的存在与对膀胱内卡介苗治疗反应不佳相关,但与膀胱内序贯吉西他滨/多西他赛治疗反应不佳无关。

Presence of an Artificial Intelligence-powered Predictive Biomarker Is Associated with a Poor Response to Intravesical Bacillus Calmette-Guerin but Not to Intravesical Sequential Gemcitabine/Docetaxel in Patients with High-grade Non-muscle-invasive Bladder Cancer.

作者信息

Packiam Vignesh T, McElree Ian M, Ghodoussipour Saum, Nimgaonkar Vivek, Krishna Viswesh, Kim Joon Kyung, Allison Derek B, Richards Jordan R, Anand Rajan K D, Chen Stephanie J, Lotan Yair, Williams Stephen B, Zhang Haochen, Watson Drew, Vrabac Damir, Abuzeid Waleed M, Joshi Anirudh, Kamat Ashish M, O'Donnell Michael A, Hensley Patrick J

机构信息

Department of Urology, Rutgers Cancer Institute, New Brunswick, NJ, USA.

Department of Urology, University of Iowa, Iowa City, IA, USA.

出版信息

Eur Urol Oncol. 2025 Apr 25. doi: 10.1016/j.euo.2025.04.006.

Abstract

Intravesical bacillus Calmette-Guerin (BCG) is considered first-line adjuvant therapy for high-risk or high-grade non-muscle-invasive bladder cancer (NMIBC). Recently, sequential intravesical gemcitabine and docetaxel (Gem/Doce) has emerged as a promising alternative to intravesical BCG. Biomarkers to select the optimal treatment regimen could facilitate clinical decision-making. The Computational Histologic Artificial Intelligence (CHAI) platform was previously used to develop an artificial intelligence-augmented histologic assay (CHAI biomarker) that identified patients with NMIBC at an increased risk of recurrence and progression events following BCG treatment. In this study, we assessed use of the CHAI biomarker among patients with treatment-naive high-grade NMIBC who received intravesical BCG or Gem/Doce. Among patients with the presence of the CHAI biomarker, those treated with BCG had a 24-mo high-grade recurrence-free survival (HG-RFS) rate of 56% (95% confidence interval [CI] 43-73%) and those treated with Gem/Doce had an HG-RFS rate of 90% (95% CI 79-100%; hazard ratio [HR] 5.4, 95% CI 1.6-18.3, p = 0.007). Among patients with an absence of the CHAI biomarker, those treated with BCG or Gem/Doce had no significant difference in HG-RFS (HR 1.3, 95% CI 0.6-2.6, p = 0.5). The interaction term between the CHAI biomarker and the treatment type was significant (p = 0.029), indicating an association between the biomarker and the clinical outcome that is dependent on the treatment received. This study suggests that the CHAI biomarker predicts which specific high-grade NMIBC patients are less likely to benefit from BCG and may benefit from alternative treatments including, potentially, Gem/Doce.

摘要

膀胱内灌注卡介苗(BCG)被认为是高危或高级别非肌层浸润性膀胱癌(NMIBC)的一线辅助治疗方法。最近,序贯膀胱内灌注吉西他滨和多西他赛(Gem/Doce)已成为膀胱内灌注BCG的一种有前景的替代方案。选择最佳治疗方案的生物标志物有助于临床决策。计算组织学人工智能(CHAI)平台先前被用于开发一种人工智能增强的组织学检测方法(CHAI生物标志物),该方法可识别出接受BCG治疗后复发和进展事件风险增加的NMIBC患者。在本研究中,我们评估了CHAI生物标志物在初治的高级别NMIBC患者中的应用情况,这些患者接受了膀胱内灌注BCG或Gem/Doce治疗。在存在CHAI生物标志物的患者中,接受BCG治疗的患者24个月高级别无复发生存率(HG-RFS)为56%(95%置信区间[CI] 43-73%),接受Gem/Doce治疗的患者HG-RFS率为90%(95% CI 79-100%;风险比[HR] 5.4,95% CI 1.6-18.3,p = 0.007)。在不存在CHAI生物标志物的患者中,接受BCG或Gem/Doce治疗的患者在HG-RFS方面无显著差异(HR 1.3,95% CI 0.6-2.6,p = 0.5)。CHAI生物标志物与治疗类型之间的交互项具有显著性(p = 0.029),表明生物标志物与临床结局之间的关联取决于所接受的治疗。本研究表明,CHAI生物标志物可预测哪些特定的高级别NMIBC患者不太可能从BCG治疗中获益,而可能从包括Gem/Doce在内的替代治疗中获益。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验