Suppr超能文献

通过螺旋重组和霍夫迈斯特效应在锂离子硅负极粘结剂中构建类蛋白质螺旋缠结结构

Construction of Protein-Like Helical-Entangled Structure in Lithium-Ion Silicon Anode Binders via Helical Recombination and Hofmeister Effect.

作者信息

Dai Shiyuan, Huang Fei, Yan Jinglun, Sun Yuan Yuan, Chen Chao, Li HaiDong

机构信息

School of Materials Science and Engineering, Zhejiang Sci-Tech University, No. 928, No. 2 Street, Xiasha Higher Education Park, Hangzhou, China.

Nanotechnology Research Institute, Jiaxing University, No. 899 Guangqiong Road, Jiaxing, China.

出版信息

Adv Sci (Weinh). 2025 May;12(20):e2412769. doi: 10.1002/advs.202412769. Epub 2025 Apr 27.

Abstract

In this study, a novel gelatin-xanthan gum composite binder is successfully developed with a protein-like helical-entangled network structure through thermo-responsive and Hofmeister effect to improve the cycling stability of silicon anodes in lithium-ion batteries. As the temperature changes, the molecular chains of xanthan gum and gelatin undergo de-helixing, intertwining, and co-helixing, ultimately self-assembling into a protein-like spatial structure. Furthermore, immersing in Hofmeister salt solution enhances the degree of helical entanglement, significantly improving strength and toughness. This novel helical-entangled structure absorbs and dissipates the stress and strain caused by silicon volume expansion through repeated bending, twisting, and stretching, similar to protein spatial structures, thereby maintaining the integrity of the silicon anode and enhancing its cycling stability. The silicon anode with the optimized binder exhibits high initial Coulombic efficiency, favorable rate performance, and long-term cycling stability. At a current density of 0.5 A g⁻¹, the silicon anode has a specific capacity of 1779.8 mAh g⁻¹ after 300 cycles, with a capacity retention rate of 80.65%. This study demonstrates the feasibility of natural polymers forming complex 3D network structures through self-assembly and intermolecular forces, providing a new approach for the design of silicon anode binders.

摘要

在本研究中,通过热响应和霍夫迈斯特效应,成功开发了一种具有类蛋白质螺旋缠结网络结构的新型明胶-黄原胶复合粘结剂,以提高锂离子电池中硅阳极的循环稳定性。随着温度变化,黄原胶和明胶的分子链发生解螺旋、缠绕和再螺旋,最终自组装成类蛋白质空间结构。此外,浸入霍夫迈斯特盐溶液可增强螺旋缠结程度,显著提高强度和韧性。这种新型螺旋缠结结构通过反复弯曲、扭转和拉伸吸收并消散由硅体积膨胀引起的应力和应变,类似于蛋白质空间结构,从而保持硅阳极的完整性并提高其循环稳定性。具有优化粘结剂的硅阳极表现出高初始库仑效率、良好的倍率性能和长期循环稳定性。在0.5 A g⁻¹的电流密度下,硅阳极在300次循环后比容量为1779.8 mAh g⁻¹,容量保持率为80.65%。本研究证明了天然聚合物通过自组装和分子间作用力形成复杂三维网络结构的可行性,为硅阳极粘结剂的设计提供了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b470/12120714/cd37ca9e7446/ADVS-12-2412769-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验