Zhang Xuntao, Yin Xinxin, Ma Huan, Wang Min, Liu Yang, Cao Yali
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China.
Small. 2025 Jun;21(24):e2502749. doi: 10.1002/smll.202502749. Epub 2025 Apr 27.
NaFe(PO)PO is thought to be a promising cathode material for sodium-ion batteries (SIBs) because of its inexpensive cost and quick 3D pathways for sodium ion migration. However, traditional modified methods often result in the formation of electrochemically inactive triphylite NaFePO and low-capacity NaFePO, alongside low electronic conductivity, leading to a capacity loss for NaFe(PO)PO. Herein, this investigation presents the initial development of an innovative 1D, high-entropy NaFe(MgCuZnNiCo)(PO)PO (NFPP-HEES) cathode material tailored for SIBs, utilizing electrostatic spinning technology for the first instance, which exhibits incredible reversible capacity and ultrahigh rate performance. The electrochemical activity of Ni contributes to the maintenance of high specific capacity in NFPP-HEES, reaching 127.6 mAh g. Additionally, Zn, Co, Cu, and Mg serve as structural pillars, minimizing the cell volume change of NFPP-HEES to a remarkable 0.02%. This results in improved rate performance and cycling stability, especially at 50 C, where the capacity remains at 90 mAh g. The synergetic effect of high-entropy ions significantly narrows the bandgap of NFPP-HEES and diminishes the Na diffusion energy barrier, thereby substantially improving the kinetic performance. This research presents a novel strategy for the advancement of SIBs cathode materials with high capacity and superior rate capability.
NaFe(PO)PO被认为是一种很有前景的钠离子电池(SIBs)正极材料,因为其成本低廉且钠离子迁移具有快速的三维通道。然而,传统的改性方法往往会导致形成电化学惰性的磷铁钠矿NaFePO和低容量的NaFePO,同时电子电导率较低,导致NaFe(PO)PO容量损失。在此,本研究首次利用静电纺丝技术展示了一种专为SIBs量身定制的创新型一维高熵NaFe(MgCuZnNiCo)(PO)PO(NFPP-HEES)正极材料的初步开发,该材料具有令人难以置信的可逆容量和超高倍率性能。Ni的电化学活性有助于维持NFPP-HEES中的高比容量,达到127.6 mAh g。此外,Zn、Co、Cu和Mg作为结构支柱,将NFPP-HEES的电池体积变化最小化至显著的0.02%。这导致倍率性能和循环稳定性得到改善,特别是在50 C时,容量保持在90 mAh g。高熵离子的协同效应显著缩小了NFPP-HEES的带隙并降低了Na扩散能垒,从而大幅提高了动力学性能。本研究提出了一种推进具有高容量和优异倍率性能的SIBs正极材料的新策略。