Yuan Yujin, Cai Jingming, Xi Xiang, Ukrainczyk Neven, Wang Yifeng, Pei Zhiyang, Zhang Yixia, Weidenkaff Anke, Xie Wenjie
Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing, 211102, China.
Anhui Conch Group Co. Ltd., Wuhu, 241000, China.
Small. 2025 Aug;21(32):e2408048. doi: 10.1002/smll.202408048. Epub 2025 Apr 27.
Given the increasing global carbon emissions, the energy crisis, and the pressing need for sustainability, this research study focuses on thermoelectric (TE) geopolymer composites (GC) as multi-functional construction materials. The research investigates the electron and ion-driving transport mechanisms in TE of GCs, considering the influence of the Soret effect. The enhancement of TE properties through additives, including Fe₂O₃ nanoparticles, graphene nanoplatelets (GNPs), and poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate) (PEDOT:PSS), is thoroughly explored. In this study, the samples GG exhibit higher TE power factors (PF), achieving values of 0.84 µWmK. This may be attributed mainly to the higher electronic and ionic conductivity of the π-bond, along with improved Seebeck coefficients resulting from the tetrahedral geopolymeric framework. Meanwhile, this research investigates the relationship between ionic thermoelectricity and conductivity, as well as the influence of porosity on the Soret effect. It reveals that in porous materials like geopolymers, the levels of ionic and electronic conductivities are comparable. However, electronic conductivity prevails beyond the threshold of conductive additive permeation. This dual ionic-electronic regulation of TE properties underscores the significant potential of geopolymers for enhanced energy harvesting applications.
鉴于全球碳排放不断增加、能源危机以及对可持续性的迫切需求,本研究聚焦于热电(TE)地质聚合物复合材料(GC)作为多功能建筑材料。该研究调查了GC热电中的电子和离子驱动传输机制,考虑了索雷特效应的影响。通过添加剂,包括Fe₂O₃纳米颗粒、石墨烯纳米片(GNPs)和聚(2,3 - 二氢噻吩并 - 1,4 - 二恶英) - 聚(苯乙烯磺酸盐)(PEDOT:PSS)来增强TE性能得到了深入探索。在本研究中,GG样品表现出更高的热电功率因子(PF),达到0.84 μWmK的值。这可能主要归因于π键具有更高的电子和离子电导率,以及四面体地质聚合物框架导致的塞贝克系数提高。同时,本研究调查了离子热电性与电导率之间的关系,以及孔隙率对索雷特效应的影响。结果表明,在地聚合物等多孔材料中,离子和电子电导率水平相当。然而,在导电添加剂渗透阈值以上电子电导率占主导。这种热电性能的双离子 - 电子调节突出了地聚合物在增强能量收集应用方面的巨大潜力。