Suppr超能文献

从过去到未来:帕金森病临床药物试验成功的数字化方法。

From past to future: Digital approaches to success of clinical drug trials for Parkinson's disease.

作者信息

Cong Cen, Milne-Ives Madison, Ananthakrishnan Ananya, Maetzler Walter, Meinert Edward

机构信息

Translational and Clinical Research Institute, Newcastle University, Newcastle, UK.

Centre for Health Technology, School of Nursing and Midwifery, University of Plymouth, Plymouth, UK.

出版信息

J Parkinsons Dis. 2025 Apr 27:1877718X251330839. doi: 10.1177/1877718X251330839.

Abstract

Recent years have seen successes in symptomatic drugs for Parkinson's disease, but the development of treatments for stopping disease progression continues to fail in clinical drug trials, largely due to the lack of clinical efficacy of drugs. This may be related to limited understanding of disease mechanisms, data heterogeneity, poor target screening and candidate selection, challenges in determining optimal dosage levels, reliance on animal models, insufficient patient participation, and lack of drug adherence in trials. Most of the recent applications of digital health technologies and artificial intelligence (AI)-based tools focused mainly on stages before clinical drug trials. Recent applications used AI-based algorithms or models to discover novel targets, inhibitors and indications, recommend drug candidates and drug dosage, and promote remote data collection. This paper reviews the state of the literature and highlights strengths and limitations in digital approaches to drug discovery and development for Parkinson's disease from 2021 to 2024, and offers recommendations for future research and practice for the success of drug clinical trials.

摘要

近年来,帕金森病的对症药物取得了成功,但用于阻止疾病进展的治疗方法在临床药物试验中仍不断失败,这主要是由于药物缺乏临床疗效。这可能与对疾病机制的理解有限、数据异质性、靶点筛选和候选药物选择不佳、确定最佳剂量水平面临的挑战、对动物模型的依赖、患者参与不足以及试验中药物依从性差有关。数字健康技术和基于人工智能(AI)的工具最近的大多数应用主要集中在临床药物试验之前的阶段。最近的应用使用基于AI的算法或模型来发现新的靶点、抑制剂和适应症,推荐候选药物和药物剂量,并促进远程数据收集。本文回顾了文献现状,强调了2021年至2024年帕金森病药物发现和开发数字方法的优势和局限性,并为药物临床试验的成功提供了未来研究和实践的建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验