Suppr超能文献

用于预测小儿心脏移植等待名单死亡率的机器学习

Machine Learning for Predicting Waitlist Mortality in Pediatric Heart Transplantation.

作者信息

Haregu Firezer, Dixon R Jerome, McCulloch Michael, Porter Michael

机构信息

Pediatric Cardiology, University of Virginia Children's Hospital, Charlottesville, Virginia, USA.

Data Science, University of Virginia, Charlottesville, Virginia, USA.

出版信息

Pediatr Transplant. 2025 Jun;29(4):e70095. doi: 10.1111/petr.70095.

Abstract

BACKGROUND

Waitlist mortality remains a critical issue for pediatric heart transplant (HTx) candidates, particularly for candidates with congenital heart disease. Listing center organ offer acceptance practices have been identified as a factor influencing waitlist outcomes. We utilized machine learning (ML) to identify factors associated with waitlist mortality, combining variables associated with institutional offer acceptance practices as well as candidate-specific risk factors.

METHODS

We analyzed the Organ Procurement and Transplantation Network database for pediatric HTx candidates listed between 2010 and 2020. Various statistical and ML models were employed to identify predictors of waitlist mortality or clinical deterioration leading to waitlist removal. The dataset was split into training (82%) and testing (18%), and the final model was selected based on predictive performance. SHAP values were used to assess variable importance.

RESULTS

Among 5523 pediatric candidates, overall waitlist mortality was 9.8%. The CatBoost model achieved the highest predictive performance with an AUC-ROC score of 0.74 and a recall score of 0.75. Key predictors included candidate diagnosis, age/size, ventilator use, eGFR, serum albumin, ECMO, and institutional factors such as high offer refusal rates and low transplant volume.

CONCLUSIONS

Institutional organ offer acceptance practices influence waitlist outcomes for pediatric HTx candidates. Centers with higher organ refusal rates are associated with worse outcomes, independent of candidate-specific risk factors, underscoring the need for standardizing organ acceptance criteria across institutions to reduce variability in decision-making and improve waitlist survival. Additionally, addressing modifiable risk factors such as malnutrition and renal dysfunction could further optimize patient outcomes.

摘要

背景

等待名单上的死亡率仍然是小儿心脏移植(HTx)候选者面临的关键问题,对于患有先天性心脏病的候选者尤其如此。已确定登记中心的器官供体接受做法是影响等待名单结果的一个因素。我们利用机器学习(ML)来确定与等待名单死亡率相关的因素,将与机构供体接受做法相关的变量以及候选者特定的风险因素结合起来。

方法

我们分析了器官获取与移植网络数据库中2010年至2020年期间登记的小儿HTx候选者的数据。采用了各种统计和ML模型来确定等待名单死亡率或导致从等待名单中移除的临床恶化的预测因素。数据集被分为训练集(82%)和测试集(18%),并根据预测性能选择最终模型。使用SHAP值来评估变量的重要性。

结果

在5523名小儿候选者中,等待名单上的总体死亡率为9.8%。CatBoost模型实现了最高的预测性能,AUC-ROC评分为0.74,召回率为0.75。关键预测因素包括候选者诊断、年龄/体型、呼吸机使用、估算肾小球滤过率(eGFR)、血清白蛋白、体外膜肺氧合(ECMO)以及机构因素,如高供体拒绝率和低移植量。

结论

机构器官供体接受做法会影响小儿HTx候选者的等待名单结果。器官拒绝率较高中心的结果更差,这与候选者特定的风险因素无关,这突出表明需要在各机构之间规范器官接受标准,以减少决策的变异性并提高等待名单上的生存率。此外,解决营养不良和肾功能不全等可改变的风险因素可以进一步优化患者的治疗结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/910c/12035663/a3fa1fc9d2d7/PETR-29-e70095-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验