Dewangan Meenakshi, Singh Vivek Kumar, Kumar Awanish
Department of Biotechnology, National Institute of Technology, Raipur, CG, India.
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2025;60(1):46-53. doi: 10.1080/10934529.2025.2493002. Epub 2025 Apr 28.
With rising concerns over plastic pollution and climate change, microalgae-based bioplastics offer a promising alternative to petroleum-derived plastics. This study explores the dual role of in bioplastic synthesis and environmental remediation through its cultivation in a wastewater-fed bioreactor. By leveraging wastewater as a nutrient source, achieved a biomass yield of 3.472 g/L, with 20 mg/L of polyhydroxyalkanoate (PHA) extracted. Fourier Transform Infrared (FTIR) spectroscopy validated the presence of PHA-specific ester functional groups, confirming its suitability for bioplastic applications. Additionally, the cultivation process resulted in a complete reduction of free CO within three days, demonstrating efficient carbon sequestration. Significant declines in wastewater contaminants, including COD, BOD, nitrogen, and phosphorus, highlight the microalga's bioremediation capabilities, making it a promising candidate for sustainable wastewater treatment. This study introduces a cost-efficient, self-sustaining microalgal bioprocess that eliminates the need for synthetic nutrients while achieving high-yield PHA production, complete CO sequestration, and efficient wastewater detoxification. By integrating three essential sustainability goals- bioplastic production, carbon capture, and water purification- this work bridges the gap between bio-based materials and environmental conservation. The results affirm as a multifunctional bioresource that supports both biopolymer synthesis and climate change mitigation. This work advances microalgal biotechnology by demonstrating its potential for large-scale, closed-loop biomanufacturing, providing an eco-friendly, scalable solution for reducing plastic waste and greenhouse gas emissions while promoting sustainable industrial practices.
随着对塑料污染和气候变化的担忧日益增加,基于微藻的生物塑料为石油衍生塑料提供了一个有前景的替代方案。本研究通过在以废水为原料的生物反应器中培养微藻,探索了其在生物塑料合成和环境修复中的双重作用。通过利用废水作为营养源,微藻实现了3.472克/升的生物量产量,并提取了20毫克/升的聚羟基脂肪酸酯(PHA)。傅里叶变换红外光谱(FTIR)验证了PHA特异性酯官能团的存在,证实了其在生物塑料应用中的适用性。此外,培养过程在三天内使游离CO完全减少,证明了高效的碳固存。废水污染物(包括化学需氧量、生化需氧量、氮和磷)的显著下降突出了微藻的生物修复能力,使其成为可持续废水处理的有前景的候选者。本研究引入了一种具有成本效益、自我维持的微藻生物过程,该过程无需合成营养物,同时实现了高产PHA生产、完全的CO固存和高效的废水解毒。通过整合生物塑料生产、碳捕获和水净化这三个基本的可持续发展目标,这项工作弥合了生物基材料与环境保护之间的差距。结果证实微藻是一种支持生物聚合物合成和缓解气候变化的多功能生物资源。这项工作通过展示微藻在大规模闭环生物制造方面的潜力,推动了微藻生物技术的发展,为减少塑料废物和温室气体排放同时促进可持续工业实践提供了一种环保、可扩展的解决方案。