Zolotarev Alexander M, Johnson Kiane, Mohammad Yusuf, Alwazzan Omnia, Slabaugh Gregory, Roney Caroline H
School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom.
Queen Mary's Digital Environment Research Institute (DERI), London, United Kingdom.
Front Cardiovasc Med. 2025 Apr 11;12:1512356. doi: 10.3389/fcvm.2025.1512356. eCollection 2025.
Cardiac fibrosis influences atrial fibrillation (AF) progression and ablation outcomes, with late gadolinium enhancement (LGE) MRI providing a non-invasive tool to measure fibrosis distributions. While deep learning (DL) has shown promise in predicting ablation success, training such pipelines is limited by the availability of real patient data.
In this study, we generated synthetic fibrosis distributions using a denoising diffusion probabilistic model trained on a collection of 100 real LGE-MRI distributions. We incorporated them into 1,000 bi-atrial meshes derived from a statistical shape model and simulated AF episodes on them before and after various ablation strategies to expand the training dataset for DL-based outcome prediction. Our approach aims to improve the predictive performance of the DL pipeline by enhancing dataset diversity and better-capturing patient variability.
We showed that the fibrosis distributions generated by the diffusion model closely resemble real LGE-MRI distributions, based on metrics such as mean intensities ( vs. ) and average Shannon entropy ( and ). AF biophysical simulations can be effectively conducted on bi-atrial meshes incorporating these synthetic distributions. Training the deep learning pipeline on these simulations produces performance metrics comparable to those achieved with real LGE-MRI distributions (ROC-AUC 0.952 vs. 0.943).
We have shown the ability of synthetic fibrosis distributions to be a data augmentation tool for deep learning classification of outcomes of various ablation strategies, which may enable rapid and precise assessment of atrial fibrillation treatment strategies.
心脏纤维化会影响心房颤动(AF)的进展和消融结果,延迟钆增强(LGE)磁共振成像(MRI)提供了一种测量纤维化分布的非侵入性工具。虽然深度学习(DL)在预测消融成功率方面已显示出前景,但此类流程的训练受到真实患者数据可用性的限制。
在本研究中,我们使用在100个真实LGE-MRI分布集合上训练的去噪扩散概率模型生成了合成纤维化分布。我们将它们纳入从统计形状模型导出的1000个双心房网格中,并在各种消融策略前后在这些网格上模拟AF发作,以扩展基于DL的结果预测的训练数据集。我们的方法旨在通过增强数据集多样性和更好地捕捉患者变异性来提高DL流程的预测性能。
我们表明,基于平均强度( 与 )和平均香农熵( 和 )等指标,扩散模型生成的纤维化分布与真实LGE-MRI分布非常相似。可以在包含这些合成分布的双心房网格上有效地进行AF生物物理模拟。在这些模拟上训练深度学习流程产生的性能指标与使用真实LGE-MRI分布所达到的指标相当(ROC-AUC 0.952对0.943)。
我们已经证明合成纤维化分布能够成为用于各种消融策略结果深度学习分类的数据增强工具,这可能有助于快速、精确地评估心房颤动治疗策略。