Suppr超能文献

医学成像中用于数据增强的深度学习方法:综述

Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review.

作者信息

Kebaili Aghiles, Lapuyade-Lahorgue Jérôme, Ruan Su

机构信息

Université Rouen Normandie, INSA Rouen Normandie, Université Le Havre Normandie, Normandie Univ, LITIS UR 4108, F-76000 Rouen, France.

出版信息

J Imaging. 2023 Apr 13;9(4):81. doi: 10.3390/jimaging9040081.

Abstract

Deep learning has become a popular tool for medical image analysis, but the limited availability of training data remains a major challenge, particularly in the medical field where data acquisition can be costly and subject to privacy regulations. Data augmentation techniques offer a solution by artificially increasing the number of training samples, but these techniques often produce limited and unconvincing results. To address this issue, a growing number of studies have proposed the use of deep generative models to generate more realistic and diverse data that conform to the true distribution of the data. In this review, we focus on three types of deep generative models for medical image augmentation: variational autoencoders, generative adversarial networks, and diffusion models. We provide an overview of the current state of the art in each of these models and discuss their potential for use in different downstream tasks in medical imaging, including classification, segmentation, and cross-modal translation. We also evaluate the strengths and limitations of each model and suggest directions for future research in this field. Our goal is to provide a comprehensive review about the use of deep generative models for medical image augmentation and to highlight the potential of these models for improving the performance of deep learning algorithms in medical image analysis.

摘要

深度学习已成为医学图像分析的常用工具,但训练数据的有限可用性仍然是一个重大挑战,尤其是在医学领域,数据采集成本高昂且受隐私法规限制。数据增强技术通过人为增加训练样本数量提供了一种解决方案,但这些技术往往产生有限且难以令人信服的结果。为解决这一问题,越来越多的研究提出使用深度生成模型来生成更符合数据真实分布的逼真且多样的数据。在本综述中,我们重点关注用于医学图像增强的三种深度生成模型:变分自编码器、生成对抗网络和扩散模型。我们概述了这些模型中每一种的当前技术水平,并讨论它们在医学成像中不同下游任务(包括分类、分割和跨模态翻译)中的应用潜力。我们还评估了每个模型的优缺点,并为该领域的未来研究提出方向。我们的目标是全面综述深度生成模型在医学图像增强中的应用,并突出这些模型在提高医学图像分析中深度学习算法性能方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3c7/10144738/ee955516200d/jimaging-09-00081-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验