Zhang Qi, Xu Xin, Guo Yinghui, Lu Yuran, He Qiong, Pu Mingbo, Li Xiaoyin, Xu Mingfeng, Zhang Fei, Luo Xiangang
State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China.
National Key Laboratory of Optical Filed Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China.
Nanophotonics. 2025 Feb 10;14(8):1203-1211. doi: 10.1515/nanoph-2024-0600. eCollection 2025 Apr.
High resolution imaging represents a relentless pursuit within the field of optical system. Multi-frame super-resolution (SR) is an effective method for enhancing sampling density, while it heavily relies on sub-pixel scale displacement of a bulky camera. Based on the symmetric transformation of quadratic-phase metasurface, we propose scaled transverse translation (STT) utilizing planar optical elements (POEs) to facilitate sub-pixel sampling and remote super-resolution imaging. The STT module composed of a pair of planar optical elements with conjugated quadratic phase profile is fabricated and experimentally verified. By displacing POE within a millimeter-level range, we achieve sub-micron in imaging shift accuracy. Furthermore, the results of SR and SR enhanced Fourier ptychography imaging demonstrate significant compatibility and effectiveness of this module. The resolution improvement in FP imaging increases from 2× to 2.8× by sub-pixel sampling using this module. Moreover, defect reduction and contrast enhancement are obtained. With its advantages of light-weight, simple structure and ease of implementation, this method shows considerable potential for numerous imaging applications.
高分辨率成像一直是光学系统领域不断追求的目标。多帧超分辨率(SR)是提高采样密度的有效方法,但其严重依赖于大型相机的亚像素尺度位移。基于二次相位超表面的对称变换,我们提出利用平面光学元件(POE)进行缩放横向平移(STT),以促进亚像素采样和远程超分辨率成像。由一对具有共轭二次相位分布的平面光学元件组成的STT模块被制作出来并通过实验验证。通过在毫米级范围内移动POE,我们实现了成像位移精度达到亚微米级。此外,SR和SR增强傅里叶叠层成像的结果证明了该模块具有显著的兼容性和有效性。使用该模块进行亚像素采样,FP成像的分辨率提高从2倍提升到2.8倍。此外,还实现了缺陷减少和对比度增强。该方法具有重量轻、结构简单和易于实现的优点,在众多成像应用中显示出巨大潜力。