Tomoshige Yoshitsugu, Tamura Mamoru, Yokoyama Tomohiro, Ishihara Hajime
Department of Materials Engineering Science, Osaka University, Osaka, Japan.
RILACS, Osaka Metropolitan University, Osaka, Japan.
Nanophotonics. 2025 Feb 17;14(8):1157-1169. doi: 10.1515/nanoph-2024-0580. eCollection 2025 Apr.
Plasmonic nanocavities with highly localized fields in their nanogaps significantly enhance light-matter interactions at the nanoscale, surpassing the diffraction limit. Strong coupling between a plasmonic nanocavity and a molecule forms hybrid upper and lower branch states, resulting in Rabi splitting (RS) in optical spectra. However, scattering and absorption spectra often fail to unambiguously distinguish whether the double peaks arise from energy transparency or RS. In contrast, photoluminescence (PL) clearly reveals the quantum state of a molecule coupled with a plasmon by filtering out background fields. This paper presents a theoretical framework based on nonlocal response theory to calculate the PL of a single molecule coupled with arbitrary metallic nanostructures. Our theory provides an analytical approach to design the spatial arrangement of metallic nanostructures and molecular orbitals and to calculate the PL in strongly coupled systems, addressing limitations in previous studies. Using this framework, we investigated a coupled system comprising a gold nanoplate dimer and a planar porphyrin tape. By modifying porphyrin units to modulate coupling strength, we explored the molecular quantum state coupled with the nanocavity through PL analysis. We elucidated the spectral features of absorption, excitation, and PL in weak and strong coupling regimes and evaluated the dependence of coupling strength on the molecular position and orientation within the nanogap. Our results demonstrate that the quantum state of a molecule in an optically forbidden transition can be excited by the highly localized field in the nanogap. This work advances the fundamental understanding of light-matter interactions at the nanoscale and provides a foundation for the development of future nanophotonic devices.
等离子体纳米腔在其纳米间隙中具有高度局域化的场,能在纳米尺度上显著增强光与物质的相互作用,超越了衍射极限。等离子体纳米腔与分子之间的强耦合形成了混合的上支和下支态,导致光谱中出现拉比分裂(RS)。然而,散射光谱和吸收光谱往往无法明确区分双峰是由能量透明性还是拉比分裂引起的。相比之下,光致发光(PL)通过滤除背景场,清晰地揭示了与等离子体耦合的分子的量子态。本文提出了一个基于非局部响应理论的理论框架,用于计算与任意金属纳米结构耦合的单分子的光致发光。我们的理论提供了一种分析方法,用于设计金属纳米结构和分子轨道的空间排列,并计算强耦合系统中的光致发光,解决了先前研究中的局限性。利用这个框架,我们研究了一个由金纳米板二聚体和平面卟啉带组成的耦合系统。通过修饰卟啉单元来调节耦合强度,我们通过光致发光分析探索了与纳米腔耦合的分子量子态。我们阐明了弱耦合和强耦合 regime 下吸收、激发和光致发光的光谱特征,并评估了耦合强度对纳米间隙内分子位置和取向的依赖性。我们的结果表明,处于光学禁戒跃迁的分子的量子态可以被纳米间隙中的高度局域化场激发。这项工作推进了对纳米尺度上光与物质相互作用的基本理解,并为未来纳米光子器件的发展提供了基础。