Lu Zhengyi, Song Dudu, Lin Cidu, Zhang Hao, Zhang Shunping, Xu Hongxing
Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
Wuhan Institute of Quantum Technology, Wuhan 430206, China.
ACS Nano. 2025 Feb 11;19(5):5637-5648. doi: 10.1021/acsnano.4c15637. Epub 2025 Jan 31.
Strong plasmon-exciton interaction between two-dimensional transition metal dichalcogenides and a plasmonic nanocavity under ambient conditions has been reported extensively. But the suspicion on whether it has reached a true "strong coupling" is always there because the commonly used dark-field scattering spectroscopy shows a larger spectral splitting and the splitting in the photoluminescence spectra is absent. Here, by using a nanobipyramid-over-mirror to enhance the in-plane vacuum field, we achieve spectral Rabi splitting in both scattering and differential reflection spectra and observe a clear photoluminescence emission of the lower plexciton branch. The established nanocavity offers two polarization-dependent gap plasmon resonances to provide excitation and quantum yield enhancement simultaneously, yielding a total photoluminescence enhancement of 2.1 × 10 times. This allows the acquisition of emission spectra from an individual coupled system regardless of the presence of an uncoupled emitting background in the collection area. The sharp tips of the nanobipyramid lead to a large single-exciton coupling strength up to a few meV. Correlated scattering, differential reflection, and photoluminescence spectra reveal the similarity between the scattering and normalized photoluminescence spectra. These correlative measurements on a single coupled system clear up the suspicions of strong plasmon-exciton interactions and will promote the development of light-emitting plexcitonic devices at room temperature.
二维过渡金属二硫族化合物与等离子体纳米腔在环境条件下的强等离子体-激子相互作用已被广泛报道。但由于常用的暗场散射光谱显示出较大的光谱分裂,而光致发光光谱中却没有分裂,因此人们一直怀疑它是否达到了真正的“强耦合”。在这里,通过使用镜上纳米双棱锥来增强面内真空场,我们在散射光谱和差分反射光谱中都实现了光谱拉比分裂,并观察到了较低激子极化激元分支的清晰光致发光发射。所建立的纳米腔提供了两个与偏振相关的带隙等离子体共振,以同时提供激发和量子产率增强,使光致发光总增强达到2.1×10倍。这使得我们能够从单个耦合系统获取发射光谱,而不管收集区域中是否存在未耦合的发射背景。纳米双棱锥的尖锐尖端导致高达几毫电子伏特的大单激子耦合强度。相关的散射、差分反射和光致发光光谱揭示了散射光谱与归一化光致发光光谱之间的相似性。对单个耦合系统的这些相关测量消除了对强等离子体-激子相互作用的怀疑,并将推动室温下发光激子极化激元器件的发展。