Ibrahim Tarek, Kendzulak Kaia, Ritacco Angelo, Monetti Melanie, Sun Hao
Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, Connecticut 06516, United States.
Macromolecules. 2025 Apr 11;58(8):3898-3905. doi: 10.1021/acs.macromol.4c03248. eCollection 2025 Apr 22.
Ring-opening metathesis polymerization (ROMP) has been widely used for the synthesis of functional polymers. However, most ROMP-derived polymers are nondepolymerizable, limiting their sustainability and eco-friendiness. While recent advances in designing low-strain cyclic olefin monomers have enabled the ROMP synthesis of depolymerizable polyolefins, the scope of these monomers remains limited due to the narrow range of ring strain energies (RSEs = 4.7-5.4 kcal/mol) required to allow both polymerization and depolymerization in a closed-loop recycling process. Herein, we present a new class of chemically recyclable polyolefins based on cycloheptene derivatives with RSEs ranging from 3.8 to 7.2 kcal/mol. The wide range of RSEs enabled the establishment of a structure-polymerizability-depolymerizability relationship, shedding light on the role of RSE in both polymerization and depolymerization. A functional group transformation (FGT) strategy, harnessing reversible ketone-to-acetal chemistry, was developed to overcome the low polymerizability of low-strain monomers and the moderate depolymerizability of polymers made from moderate-strain monomers. This FGT approach not only enhanced the chemical recycling of moderately depolymerizable polyolefins but also provided access to highly depolymerizable polyolefins that are challenging to synthesize through direct ROMP of ultralow strain monomers. Moreover, the thermal properties of the chemically recyclable polyolefins developed in this study are highly tunable, with a broad range of glass transition temperatures (-7 to 104 °C), highlighting their potential for various applications.
开环易位聚合(ROMP)已被广泛用于功能聚合物的合成。然而,大多数由ROMP衍生的聚合物是不可解聚的,这限制了它们的可持续性和环境友好性。虽然最近在设计低应变环状烯烃单体方面的进展使得通过ROMP合成可解聚的聚烯烃成为可能,但由于在闭环回收过程中允许聚合和解聚所需的环应变能(RSEs = 4.7 - 5.4千卡/摩尔)范围较窄,这些单体的范围仍然有限。在此,我们提出了一类基于环庚烯衍生物的新型化学可回收聚烯烃,其RSEs范围为3.8至7.2千卡/摩尔。广泛的RSEs使得能够建立结构 - 聚合性 - 解聚性关系,揭示了RSE在聚合和解聚中的作用。开发了一种利用可逆酮 - 缩醛化学的官能团转化(FGT)策略,以克服低应变单体的低聚合性以及由中等应变单体制成的聚合物的中等解聚性。这种FGT方法不仅增强了中等解聚性聚烯烃的化学回收,还提供了获得通过超低应变单体直接ROMP合成具有挑战性的高解聚性聚烯烃的途径。此外,本研究中开发的化学可回收聚烯烃的热性能具有高度可调性,玻璃化转变温度范围广泛(-7至104°C),突出了它们在各种应用中的潜力。