Suppr超能文献

由单硫代二内酯单体实现的坚韧且可回收的塑料。

Tough while Recyclable Plastics Enabled by Monothiodilactone Monomers.

机构信息

Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China.

出版信息

J Am Chem Soc. 2023 Jan 25;145(3):1877-1885. doi: 10.1021/jacs.2c11502. Epub 2023 Jan 3.

Abstract

The current scale of plastics production and the attendant waste disposal issues represent an underexplored opportunity for chemically recyclable polymers. Typical recyclable polymers are subject to the trade-off between the monomer's polymerizability and the polymer's depolymerizability as well as insufficient performance for practical applications. Herein, we demonstrate that a single atom oxygen-by-sulfur substitution of relatively highly strained dilactone is an effective and robust strategy for converting the "non-recyclable" polyester into a chemically recyclable polymer by lowering the ring strain energy in the monomer (from 16.0 kcal mol in dilactone to 9.1 kcal mol in monothiodilactone). These monothio-modification monomers enable both high/selective polymerizability and recyclability, otherwise conflicting features in a typical monomer, as evidenced by regioselective ring-opening, minimal transthioesterifications, and quantitative recovery of the pristine monomer. Computational and experimental studies demonstrate that an n→π* interaction between the adjacent ester and thioester in the polymer backbone has been implicated in the high selectivity for propagation over transthioesterification. The resulting polymer demonstrates high performance with its mechanical properties being comparable to some commodity polyolefins. Thio-modification is a powerful strategy for enabling conversion of six-membered dilactones into chemically recyclable and tough thermoplastics that exhibit promise as next-generation sustainable polymers.

摘要

目前的塑料生产规模和随之而来的废物处理问题为可化学回收的聚合物提供了一个尚未充分探索的机会。典型的可回收聚合物受到单体聚合性和聚合物可解聚性之间的权衡以及实际应用中性能不足的限制。在此,我们证明了相对高度应变的二内酯中单原子氧取代硫是一种有效的、强大的策略,可以通过降低单体中的环应变能(从二内酯中的 16.0 kcal mol 降低到单硫二内酯中的 9.1 kcal mol)将“不可回收”的聚酯转化为可化学回收的聚合物。这些单硫修饰单体能够实现高/选择性聚合和可回收性,这是典型单体中相互冲突的特征,这一点可以通过区域选择性开环、最小的硫酯交换反应和原始单体的定量回收来证明。计算和实验研究表明,聚合物主链中相邻酯基和硫酯基之间的 n→π*相互作用与引发聚合反应相对于硫酯交换反应的高选择性有关。得到的聚合物具有出色的性能,其机械性能可与一些商品聚烯烃相媲美。硫修饰是将六元二内酯转化为可化学回收的坚韧热塑性塑料的一种有力策略,有望成为下一代可持续聚合物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验