Suppr超能文献

基于高负样本和过采样的药物发现贝叶斯推理

Bayesian Inference for Drug Discovery by High Negative Samples and Oversampling.

作者信息

Le Manh Hung, Dao Nam Anh, Dang Xuan Tho

机构信息

Electric Power University, Hanoi, Viet Nam.

Academy of Policy and Development, Hanoi, Viet Nam.

出版信息

Bioinform Biol Insights. 2025 Apr 12;19:11779322251328269. doi: 10.1177/11779322251328269. eCollection 2025.

Abstract

Drug repositioning holds great promise for reducing the time and cost associated with traditional drug discovery, but it faces significant challenges related to data imbalance and noise in negative samples. In this article, we introduce a novel method leveraging high negative oversampling (HNO) to address these challenges. Our approach integrates HNO with advanced techniques such as network-based graph mining, matrix factorization, and Bayesian inference, specifically designed for imbalanced data scenarios. Constructing high-quality negative samples is crucial to mitigate the detrimental effects of noisy negative data and enhance model performance. Experimental results demonstrate the efficacy of our approach in enhancing the performance of drug discovery models by effectively managing data imbalance and refining the selection of negative samples. This methodology provides a robust framework for improving drug repositioning, with potential applications in broader biomedical domains.

摘要

药物重新定位在缩短与传统药物研发相关的时间和成本方面具有巨大潜力,但它面临着与阴性样本中的数据不平衡和噪声相关的重大挑战。在本文中,我们介绍了一种利用高阴性过采样(HNO)来应对这些挑战的新方法。我们的方法将HNO与诸如基于网络的图挖掘、矩阵分解和贝叶斯推理等先进技术相结合,这些技术是专门为不平衡数据场景设计的。构建高质量的阴性样本对于减轻噪声阴性数据的不利影响和提高模型性能至关重要。实验结果证明了我们的方法在通过有效管理数据不平衡和优化阴性样本选择来提高药物发现模型性能方面的有效性。这种方法为改进药物重新定位提供了一个强大的框架,在更广泛的生物医学领域具有潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2758/12033409/6a291cf6a74a/10.1177_11779322251328269-fig1.jpg

相似文献

1
Bayesian Inference for Drug Discovery by High Negative Samples and Oversampling.
Bioinform Biol Insights. 2025 Apr 12;19:11779322251328269. doi: 10.1177/11779322251328269. eCollection 2025.
2
Additional Neural Matrix Factorization model for computational drug repositioning.
BMC Bioinformatics. 2019 Aug 14;20(1):423. doi: 10.1186/s12859-019-2983-2.
3
Drug-target affinity prediction with extended graph learning-convolutional networks.
BMC Bioinformatics. 2024 Feb 16;25(1):75. doi: 10.1186/s12859-024-05698-6.
4
A quantum-based oversampling method for classification of highly imbalanced and overlapped data.
Exp Biol Med (Maywood). 2023 Dec;248(24):2500-2513. doi: 10.1177/15353702231220665. Epub 2024 Jan 28.
5
Fusing graph transformer with multi-aggregate GCN for enhanced drug-disease associations prediction.
BMC Bioinformatics. 2024 Feb 20;25(1):79. doi: 10.1186/s12859-024-05705-w.
6
NOTE: non-parametric oversampling technique for explainable credit scoring.
Sci Rep. 2024 Oct 30;14(1):26070. doi: 10.1038/s41598-024-78055-5.
8
Heterogeneous graph inference with matrix completion for computational drug repositioning.
Bioinformatics. 2021 Apr 1;36(22-23):5456-5464. doi: 10.1093/bioinformatics/btaa1024.
9
NATE: Non-pArameTric approach for Explainable credit scoring on imbalanced class.
PLoS One. 2024 Dec 31;19(12):e0316454. doi: 10.1371/journal.pone.0316454. eCollection 2024.
10
Improved Computational Drug-Repositioning by Self-Paced Non-Negative Matrix Tri-Factorization.
IEEE/ACM Trans Comput Biol Bioinform. 2023 May-Jun;20(3):1953-1962. doi: 10.1109/TCBB.2022.3225300. Epub 2023 Jun 5.

本文引用的文献

1
Deep multiple instance learning on heterogeneous graph for drug-disease association prediction.
Comput Biol Med. 2025 Jan;184:109403. doi: 10.1016/j.compbiomed.2024.109403. Epub 2024 Nov 21.
3
Artificial intelligence in cancer target identification and drug discovery.
Signal Transduct Target Ther. 2022 May 10;7(1):156. doi: 10.1038/s41392-022-00994-0.
4
A weighted bilinear neural collaborative filtering approach for drug repositioning.
Brief Bioinform. 2022 Mar 10;23(2). doi: 10.1093/bib/bbab581.
7
Predicting drug-disease associations through layer attention graph convolutional network.
Brief Bioinform. 2021 Jul 20;22(4). doi: 10.1093/bib/bbaa243.
8
Oral prednisolone for acute otitis media in children: a pilot, pragmatic, randomised, open-label, controlled study (OPAL study).
Pilot Feasibility Stud. 2020 Aug 29;6:121. doi: 10.1186/s40814-020-00671-5. eCollection 2020.
9
Link Prediction Only With Interaction Data and its Application on Drug Repositioning.
IEEE Trans Nanobioscience. 2020 Jul;19(3):547-555. doi: 10.1109/TNB.2020.2990291. Epub 2020 Apr 24.
10
HNet-DNN: Inferring New Drug-Disease Associations with Deep Neural Network Based on Heterogeneous Network Features.
J Chem Inf Model. 2020 Apr 27;60(4):2367-2376. doi: 10.1021/acs.jcim.9b01008. Epub 2020 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验