Le Manh Hung, Dao Nam Anh, Dang Xuan Tho
Electric Power University, Hanoi, Viet Nam.
Academy of Policy and Development, Hanoi, Viet Nam.
Bioinform Biol Insights. 2025 Apr 12;19:11779322251328269. doi: 10.1177/11779322251328269. eCollection 2025.
Drug repositioning holds great promise for reducing the time and cost associated with traditional drug discovery, but it faces significant challenges related to data imbalance and noise in negative samples. In this article, we introduce a novel method leveraging high negative oversampling (HNO) to address these challenges. Our approach integrates HNO with advanced techniques such as network-based graph mining, matrix factorization, and Bayesian inference, specifically designed for imbalanced data scenarios. Constructing high-quality negative samples is crucial to mitigate the detrimental effects of noisy negative data and enhance model performance. Experimental results demonstrate the efficacy of our approach in enhancing the performance of drug discovery models by effectively managing data imbalance and refining the selection of negative samples. This methodology provides a robust framework for improving drug repositioning, with potential applications in broader biomedical domains.
药物重新定位在缩短与传统药物研发相关的时间和成本方面具有巨大潜力,但它面临着与阴性样本中的数据不平衡和噪声相关的重大挑战。在本文中,我们介绍了一种利用高阴性过采样(HNO)来应对这些挑战的新方法。我们的方法将HNO与诸如基于网络的图挖掘、矩阵分解和贝叶斯推理等先进技术相结合,这些技术是专门为不平衡数据场景设计的。构建高质量的阴性样本对于减轻噪声阴性数据的不利影响和提高模型性能至关重要。实验结果证明了我们的方法在通过有效管理数据不平衡和优化阴性样本选择来提高药物发现模型性能方面的有效性。这种方法为改进药物重新定位提供了一个强大的框架,在更广泛的生物医学领域具有潜在应用。