Suppr超能文献

静息态真实世界临床脑电图记录中与年龄相关的周期性和非周期性活动的规范特征描述。

Normative characterization of age-related periodic and aperiodic activity in resting-state real-world clinical EEG recordings.

作者信息

Leroy Sophie, Bublitz Viktor, von Dincklage Falk, Antonenko Daria, Fleischmann Robert

机构信息

Delirium Prevention Unit, Universitätsmedizin Greifswald, Greifswald, Germany.

Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.

出版信息

Front Aging Neurosci. 2025 Apr 11;17:1540040. doi: 10.3389/fnagi.2025.1540040. eCollection 2025.

Abstract

INTRODUCTION

The relevance of electroencephalographic (EEG) biomarkers is increasing, as advancements in spectral analysis enable computational decomposition of complex neural signals into quantitative EEG (qEEG) parameters. Especially the differentiation of periodic and aperiodic components can reveal insights into neural function, disease biomarkers, and therapeutic efficacy. The aim of these analyses from real-world clinical routine EEG recordings was to provide normative values of physiological age-related oscillatory (periodic) and non-rhythmic (aperiodic) activity.

METHODS

We analyzed 532 physiological EEGs of patients between 8 and 92 years of age. EEG segments were preprocessed, and the power spectrum was computed using a multitaper method. We decomposed the power spectrum into periodic (peak power, frequency, and bandwidth) and aperiodic (intercept and exponent) components. Linear regression models were used to investigate age-related changes in these parameters.

RESULTS

We observed significant global age-related changes in the periodic alpha (-0.015 Hz/year) and gamma (+0.013 to +0.031 Hz/year) peak frequency as well as in the aperiodic exponent (-0.003 to -0.004 μV/Hz/year). In the other parameters there were solely regional or no significant age-related changes.

CONCLUSION

Decomposing the power spectrum into periodic and aperiodic components allows for the characterization of age-related changes.

SIGNIFICANCE

This study provides the first spectrum-wide normative characterization of age-related changes in periodic and aperiodic activity, relevant for non-invasive brain stimulation with alternating current targeting ongoing oscillatory activity.

摘要

引言

随着频谱分析技术的进步,能够将复杂的神经信号通过计算分解为定量脑电图(qEEG)参数,脑电图(EEG)生物标志物的相关性日益增加。特别是周期性和非周期性成分的区分可以揭示神经功能、疾病生物标志物和治疗效果的相关见解。这些来自实际临床常规EEG记录分析的目的是提供与生理年龄相关的振荡(周期性)和非节律性(非周期性)活动的标准值。

方法

我们分析了532例年龄在8至92岁之间患者的生理EEG。对EEG片段进行预处理,并使用多 taper 方法计算功率谱。我们将功率谱分解为周期性(峰值功率、频率和带宽)和非周期性(截距和指数)成分。使用线性回归模型研究这些参数中与年龄相关的变化。

结果

我们观察到,周期性α波(-0.015Hz/年)和γ波(+0.013至+0.031Hz/年)的峰值频率以及非周期性指数(-0.003至-0.004μV/Hz/年)存在显著的与年龄相关的全局变化。在其他参数中,仅存在区域或无显著的与年龄相关的变化。

结论

将功率谱分解为周期性和非周期性成分能够表征与年龄相关的变化。

意义

本研究首次提供了与年龄相关的周期性和非周期性活动变化的全频谱标准表征,这对于以正在进行的振荡活动为目标的交流电非侵入性脑刺激具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f62/12021842/c45b169346b0/fnagi-17-1540040-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验