文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于骨关节炎治疗的精确清除线粒体活性氧的膜仿生纳米酶复合杂化甘草酸水凝胶

Membrane biomimetic nanoenzyme-incorporated hybrid glycyrrhizic acid hydrogel for precise mitochondrial ROS scavenging for osteoarthritis treatment.

作者信息

Fan Yong, Niu Zexuan, Yin Li, Yao Longtao, Ding Sheyuan, Tong Yu, Wang Jiao, Hong Zheping, Chen Jihang, Zhang Qiong, Ji Lichen, Chen Jiaxin, Xia Chen, Bi Qing

机构信息

Department of Sports Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, China.

Postgraduate training base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China.

出版信息

Mater Today Bio. 2025 Apr 17;32:101778. doi: 10.1016/j.mtbio.2025.101778. eCollection 2025 Jun.


DOI:10.1016/j.mtbio.2025.101778
PMID:40290887
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12032948/
Abstract

Osteoarthritis (OA) is a progressive degenerative disorder which severely threatens the quality of life of older individuals. OA progression is closely related to heightened levels of mitochondrial reactive oxygen species (mtROS). Although nanozymes have a good ROS-scavenging effect, they cannot precisely scavenge mtROS because of the immune rejection of cell membranes, lysosomal escape, and the inability of conventional nanozymes to directly target mitochondria. Dual-target nanozymes were engineered to precisely scavenge mtROS in chondrocytes. We used chondrocyte membrane-camouflaged TPP-modified hollow Prussian blue nanozymes and subsequently encapsulated these nanozymes in a hybrid glycyrrhizic acid hydrogel. The therapeutic efficacy and underlying mechanisms were assessed in vitro and in vivo. The novel nanozymes enhanced cell selectivity, immune evasion capabilities, and mitochondrial targeting. The dual-targeted nanozymes exerted a pronounced therapeutic impact on inflammatory chondrocytes, mitigated mtDNA leakage by precisely scavenging mtROS, dampened cGAS-STING-NF-κB signaling, and enhanced chondrocyte function. The hybrid hydrogels also exhibited improved therapeutic outcomes. We confirmed the beneficial effects of the nanozyme-hydrogel combination on OA progression in mice. The nanozyme-hydrogel combination can reduce precisely scavenge mtROS in chondrocytes, avoiding the leakage of mtDNA and suppressing the cGAS-STING-NF-κB signaling pathway, thereby decreasing inflammatory responses and alleviate OA progression.

摘要

骨关节炎(OA)是一种进行性退行性疾病,严重威胁老年人的生活质量。OA的进展与线粒体活性氧(mtROS)水平升高密切相关。尽管纳米酶具有良好的ROS清除作用,但由于细胞膜的免疫排斥、溶酶体逃逸以及传统纳米酶无法直接靶向线粒体,它们不能精确清除mtROS。因此设计了双靶向纳米酶来精确清除软骨细胞中的mtROS。我们使用软骨细胞膜伪装的TPP修饰的空心普鲁士蓝纳米酶,随后将这些纳米酶封装在混合甘草酸水凝胶中。在体外和体内评估了其治疗效果和潜在机制。这种新型纳米酶提高了细胞选择性、免疫逃逸能力和线粒体靶向性。双靶向纳米酶对炎性软骨细胞具有显著的治疗作用,通过精确清除mtROS减轻mtDNA泄漏,抑制cGAS-STING-NF-κB信号传导,并增强软骨细胞功能。混合水凝胶也表现出更好的治疗效果。我们证实了纳米酶-水凝胶组合对小鼠OA进展的有益作用。纳米酶-水凝胶组合可以精确清除软骨细胞中的mtROS,避免mtDNA泄漏并抑制cGAS-STING-NF-κB信号通路,从而减少炎症反应并减轻OA进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/5e40086612a5/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/2f01b6e952b4/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/35b8156c2d66/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/de4cb305b1c7/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/c4482f484df4/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/a1b221d73b96/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/7b91168684f3/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/53803495922b/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/86d311315bbf/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/033ce8d03e49/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/5e40086612a5/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/2f01b6e952b4/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/35b8156c2d66/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/de4cb305b1c7/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/c4482f484df4/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/a1b221d73b96/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/7b91168684f3/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/53803495922b/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/86d311315bbf/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/033ce8d03e49/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5000/12032948/5e40086612a5/gr9.jpg

相似文献

[1]
Membrane biomimetic nanoenzyme-incorporated hybrid glycyrrhizic acid hydrogel for precise mitochondrial ROS scavenging for osteoarthritis treatment.

Mater Today Bio. 2025-4-17

[2]
Mitochondrial-targeting MnO/UIO-TPP nanozyme scavenge ROS to restore mitochondrial function for osteoarthritis therapy.

Regen Biomater. 2023-9-1

[3]
Gel@CAT-L hydrogel mediates mitochondrial unfolded protein response to regulate reactive oxygen species and mitochondrial homeostasis in osteoarthritis.

Biomaterials. 2025-10

[4]
Nanozyme-enhanced injectable hyaluronic acid-based hydrogel for the treatment of osteoarthritis.

Int J Biol Macromol. 2024-12

[5]
Integrated Cascade Nanozyme Remodels Chondrocyte Inflammatory Microenvironment in Temporomandibular Joint Osteoarthritis via Inhibiting ROS-NF-κB and MAPK Pathways.

Adv Healthc Mater. 2023-4

[6]
Pt-Se Hybrid Nanozymes with Potent Catalytic Activities to Scavenge ROS/RONS and Regulate Macrophage Polarization for Osteoarthritis Therapy.

Research (Wash D C). 2024-2-26

[7]
Mitochondrial-targeting and NIR-responsive MnO@PDA@Pd-SS31 nanozymes reduce oxidative stress and reverse mitochondrial dysfunction to alleviate osteoarthritis.

Biomaterials. 2024-3

[8]
Elevated expression of Piezo1 activates the cGAS-STING pathway in chondrocytes by releasing mitochondrial DNA.

Osteoarthritis Cartilage. 2025-5

[9]
Neutrophil-macrophage hybrid membrane-coated prussian blue nanozyme for ulcerative colitis treatment and mechanistic insights.

J Nanobiotechnology. 2025-1-24

[10]
Microvesicles-hydrogel breaks the cycle of cellular senescence by improving mitochondrial function to treat osteoarthritis.

J Nanobiotechnology. 2023-11-15

引用本文的文献

[1]
Nanozyme-driven self-assembled rhein gels for osteoarthritis therapy: Alleviating chondrocyte inflammation by reprogramming macrophages.

Mater Today Bio. 2025-7-31

[2]
An emerging role of mitochondrial quality control in bone metabolism: from molecular mechanisms to targeted therapeutic interventions.

Cell Mol Life Sci. 2025-7-29

本文引用的文献

[1]
Restoring articular cartilage: insights from structure, composition and development.

Nat Rev Rheumatol. 2025-5

[2]
Silk fibroin-based hydrogels for cartilage organoids in osteoarthritis treatment.

Theranostics. 2025-1-1

[3]
Membrane-coated nanoparticles as a biomimetic targeted delivery system for tumour therapy.

Biomater Transl. 2024-3-28

[4]
Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions.

Signal Transduct Target Ther. 2024-7-1

[5]
Cartilage progenitor cells derived extracellular vesicles-based cell-free strategy for osteoarthritis treatment by efficient inflammation inhibition and extracellular matrix homeostasis restoration.

J Nanobiotechnology. 2024-6-19

[6]
Research Progress in Hydrogels for Cartilage Organoids.

Adv Healthc Mater. 2024-9

[7]
Endogenous stimuli-responsive separating microneedles to inhibit hypertrophic scar through remodeling the pathological microenvironment.

Nat Commun. 2024-3-6

[8]
Moderate mechanical stress suppresses chondrocyte ferroptosis in osteoarthritis by regulating NF-κB p65/GPX4 signaling pathway.

Sci Rep. 2024-3-1

[9]
Chondrocyte membrane-coated nanoparticles promote drug retention and halt cartilage damage in rat and canine osteoarthritis.

Sci Transl Med. 2024-2-21

[10]
A comparative study of human and porcine-derived decellularised nerve matrices.

Biomater Transl. 2023-9-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索