Suppr超能文献

通过将可见-近红外光谱作为一种分析技术,并以DD-SIMCA作为单类分类方法来对棉花微卡粘性进行分类的潜力。

Potential of Classifying Cotton Minicard Stickiness through Vis-NIR Spectroscopy as an Analytical Technique with DD-SIMCA as One-Class Classification.

作者信息

Liu Yongliang

机构信息

Cotton Quality and Innovation Research Unit, Agricultural Research Service, Southern Regional Research Center, United States Department of Agriculture, New Orleans, Louisiana 70124, United States.

出版信息

ACS Omega. 2025 Apr 8;10(15):14835-14843. doi: 10.1021/acsomega.4c09700. eCollection 2025 Apr 22.

Abstract

Cotton stickiness, mostly resulting from honeydew depositions of whiteflies and aphids, presents a worldwide problem for cotton growers and processors consistently. To meet the challenge of measuring the cotton stickiness, a few direct and indirect techniques exist. Previous study showed that Fourier transform near-infrared (FT-NIR) spectroscopy can be used to detect Minicard stickiness in raw cotton from partial least-squares (PLS) analysis. In the present investigation, visible-NIR (vis-NIR) as an analytical technique was explored for potential classification of four-class Minicard cotton stickiness, in combination mainly with the data-driven version of soft independent modeling of class analogy (DD-SIMCA) as one-class classification. Both PLS prediction-based classification and DD-SIMCA models in different spectral regions were developed to optimize the identification efficiency. Compared to an optimal PLS prediction-based classification model indicating a four-class correct classification of 77.8% in the calibration set and 69.2% in the validation set from the 750-1850 nm NIR region, an optimal DD-SIMCA model from the same spectral region could reach an improved discrimination of >95.0%, with a 98.1% correct identification in the calibration set and a 96.2% success in the validation set. This observation emphasized that vis-NIR spectroscopy with an DD-SIMCA approach could be a rapid and nondestructive tool for screening the Minicard stickiness in cottons.

摘要

棉花粘性主要源于粉虱和蚜虫分泌的蜜露,一直是困扰全球棉花种植者和加工者的问题。为应对测量棉花粘性的挑战,存在一些直接和间接技术。先前的研究表明,通过偏最小二乘法(PLS)分析,傅里叶变换近红外(FT-NIR)光谱可用于检测原棉中的迷你卡粘性。在本研究中,探索了可见-近红外(vis-NIR)光谱作为一种分析技术,用于对四类迷你卡棉花粘性进行潜在分类,主要结合数据驱动的类类比软独立建模(DD-SIMCA)作为单类分类方法。开发了不同光谱区域基于PLS预测的分类模型和DD-SIMCA模型,以优化识别效率。与基于PLS预测的最佳分类模型相比,该模型在750 - 1850 nm近红外区域的校正集中四类正确分类率为77.8%,验证集中为69.2%,而同一光谱区域的最佳DD-SIMCA模型能够实现大于95.0%的更高判别率,在校正集中正确识别率为98.1%,在验证集中成功率为96.2%。这一结果表明,采用DD-SIMCA方法的vis-NIR光谱可成为快速无损筛选棉花迷你卡粘性的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc4/12019470/0d2c9f81b249/ao4c09700_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验