文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

嵌入金银双金属纳米粒子的纤维素膜用于高效还原对硝基苯酚

Cellulose Membranes Embedded with Gold-Silver Bimetallic Nanoparticles for the Efficient Reduction of 4-Nitrophenol.

作者信息

de Carvalho Maíra Vasconcelos, Lago João Henrique G, Hajjar-Garreau Samar, Camilo Fernanda F, Oliveira Larissa V F

机构信息

Chemistry Department, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, SP-09913-030 Diadema, Brazil.

Center of Natural Sciences and Humanities, Federal University of ABC, SP-09210-580 Santo Andre, Brazil.

出版信息

ACS Omega. 2025 Apr 7;10(15):14805-14815. doi: 10.1021/acsomega.4c09636. eCollection 2025 Apr 22.


DOI:10.1021/acsomega.4c09636
PMID:40291010
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12019471/
Abstract

Bimetallic nanoparticles (BNPs) have attracted much attention recently due to their improved properties compared to monometallic ones. Gold and silver nanoparticles (AuAgNPs) are among the most studied BNPs. Using these particles as powder or dispersion has drawbacks such as ease of aggregation and difficulty separating and recovering from the reaction medium. Therefore, immobilizing these nanoparticles in polymeric matrices, such as cellulose, is appealing. In this context, the present work focused on preparing unmodified cellulose membranes containing AuAgNPs for use as heterogeneous catalysts in reducing the pollutant 4-nitrophenol. Incorporating these nanoparticles into cellulose membranes represents a significant advancement in heterogeneous catalysis. In addition to being eco-friendly, cellulose membranes offer ease of handling and the potential for reusability, which are crucial factors in catalysis. The nanoparticles were prepared in an aqueous medium from the seeded growth of a silver shell around AuNP seeds. Images recorded by transmission electron microscopy showed that the particles have diameters smaller than 100 nm and are core-shell type. The cellulose membrane was prepared by dissolving microcrystalline cellulose in an ionic liquid, followed by a regeneration process using water. Next, the bimetallic nanoparticles were incorporated into the cellulose membrane. The analyses revealed that the membranes contain bimetallic nanoparticles homogeneously distributed in the matrix, and the inductively coupled plasma-optical emission spectroscopy (ICP-OES) showed that the membrane has 0.339 wt % in silver and 0.069% in gold. The membranes produced were efficient heterogeneous catalysts in reducing 4-nitrophenol, used for at least four cycles without loss of efficiency. This material can be easily isolated from the reaction medium, avoiding centrifugation or filtration processes for reuse. This study represents the first use of AuAgNPs supported on nonmodified cellulose membranes as heterogeneous catalysts, marking an advancement in catalysis and material science.

摘要

双金属纳米颗粒(BNPs)由于其相较于单金属纳米颗粒具有改进的性能,近年来备受关注。金和银纳米颗粒(AuAgNPs)是研究最多的双金属纳米颗粒之一。将这些颗粒用作粉末或分散体存在诸如易于聚集以及难以从反应介质中分离和回收等缺点。因此,将这些纳米颗粒固定在聚合物基质(如纤维素)中很有吸引力。在此背景下,本工作聚焦于制备含有AuAgNPs的未改性纤维素膜,用作还原污染物4-硝基苯酚的多相催化剂。将这些纳米颗粒掺入纤维素膜代表了多相催化领域的一项重大进展。除了环保外,纤维素膜易于处理且具有可重复使用的潜力,这些都是催化过程中的关键因素。纳米颗粒是在水介质中通过在AuNP种子周围生长银壳的种子生长法制备的。透射电子显微镜记录的图像显示,这些颗粒的直径小于100 nm,且为核壳型。纤维素膜是通过将微晶纤维素溶解在离子液体中,然后用水进行再生过程制备的。接下来,将双金属纳米颗粒掺入纤维素膜中。分析表明,膜中含有均匀分布在基质中的双金属纳米颗粒,电感耦合等离子体发射光谱(ICP-OES)显示该膜中银的含量为0.339 wt%,金的含量为0.069%。所制备的膜在还原4-硝基苯酚方面是高效的多相催化剂,可使用至少四个循环而不损失效率。这种材料可以很容易地从反应介质中分离出来,避免了离心或过滤过程以便重复使用。本研究代表了首次将负载在未改性纤维素膜上的AuAgNPs用作多相催化剂,标志着催化和材料科学领域的一项进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/0dd9fd6c899f/ao4c09636_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/96b2955f4be9/ao4c09636_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/dac15f25ea4b/ao4c09636_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/4b8289ce1726/ao4c09636_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/9b15bdf97c0b/ao4c09636_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/a7c9f005a1c0/ao4c09636_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/3b38f8ed27f1/ao4c09636_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/781ebb863775/ao4c09636_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/f2994b0800e9/ao4c09636_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/a0f770f869a7/ao4c09636_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/e2eacae011ac/ao4c09636_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/705e5020c137/ao4c09636_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/0dd9fd6c899f/ao4c09636_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/96b2955f4be9/ao4c09636_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/dac15f25ea4b/ao4c09636_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/4b8289ce1726/ao4c09636_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/9b15bdf97c0b/ao4c09636_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/a7c9f005a1c0/ao4c09636_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/3b38f8ed27f1/ao4c09636_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/781ebb863775/ao4c09636_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/f2994b0800e9/ao4c09636_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/a0f770f869a7/ao4c09636_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/e2eacae011ac/ao4c09636_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/705e5020c137/ao4c09636_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/12019471/0dd9fd6c899f/ao4c09636_0012.jpg

相似文献

[1]
Cellulose Membranes Embedded with Gold-Silver Bimetallic Nanoparticles for the Efficient Reduction of 4-Nitrophenol.

ACS Omega. 2025-4-7

[2]
Use of single particle inductively coupled plasma mass spectrometry for understanding the formation of bimetallic nanoparticles.

Talanta. 2022-1-1

[3]
Low-Cost Label-Free Biosensing Bimetallic Cellulose Strip with SILAR-Synthesized Silver Core-Gold Shell Nanoparticle Structures.

Anal Chem. 2017-5-25

[4]
Tuning Pd-to-Ag Ratio to Enhance the Synergistic Activity of Fly Ash-Supported PdAg Bimetallic Nanoparticles.

ACS Omega. 2023-12-20

[5]
Efficient oxidation of benzyl alcohol into benzaldehyde catalyzed by graphene oxide and reduced graphene oxide supported bimetallic Au-Sn catalysts.

RSC Adv. 2023-8-7

[6]
Highly efficient dip catalysts using bacterial cellulose impregnated with self-crosslinked glycol chitosan and silver nanoparticles for 4-nitrophenol reduction.

Int J Biol Macromol. 2024-11

[7]
Synthesis and Catalytic Activity of Pluronic Stabilized Silver-Gold Bimetallic Nanoparticles.

RSC Adv. 2014

[8]
Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles.

Carbohydr Polym. 2015-10-9

[9]
Templating of catalytic gold and silver nanoparticles by waste plastic PET-derived hydrogel playing a dual role of a reductant and a matrix.

Waste Manag. 2023-6-1

[10]
Highly efficient and reusable CuAu nanoparticles supported on crosslinked chitosan hydrogels as a plasmonic catalyst for nitroarene reduction.

Environ Res. 2024-4-15

本文引用的文献

[1]
Recent Advances in Synergistic Effect of Nanoparticles and Its Biomedical Application.

Int J Mol Sci. 2024-3-13

[2]
Hybrids based on borate-functionalized cellulose nanofibers and noble-metal nanoparticles as sustainable catalysts for environmental applications.

RSC Adv. 2020-3-26

[3]
State of the Art on Green Route Synthesis of Gold/Silver Bimetallic Nanoparticles.

Molecules. 2022-2-8

[4]
Two-Dimensional Self-Assembly of Au@Ag Core-Shell Nanocubes with Different Permutations for Ultrasensitive SERS Measurements.

ACS Omega. 2022-1-19

[5]
Synthesis of bimetallic silver-gold nanoparticle composites using a cellulose dope: Tunable nanostructure and its biological activity.

Carbohydr Polym. 2020-11-15

[6]
Nanofibrillar cellulose/Au@Ag nanoparticle nanocomposite as a SERS substrate for detection of paraquat and thiram in lettuce.

Mikrochim Acta. 2020-6-16

[7]
Nanoparticle processing: Understanding and controlling aggregation.

Adv Colloid Interface Sci. 2020-4-16

[8]
Synthesis of gold-silver nanoalloys under microwave-assisted irradiation by deposition of silver on gold nanoclusters/triple helix glucan and antifungal activity.

Carbohydr Polym. 2020-6-15

[9]
Free-standing cellulose film containing manganese dioxide nanoparticles and its use in discoloration of indigo carmine dye.

Carbohydr Polym. 2019-11-13

[10]
Rapid Catalytic Reduction of 4-Nitrophenol and Clock Reaction of Methylene Blue using Copper Nanowires.

Nanomaterials (Basel). 2019-6-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索