Suppr超能文献

一种用于人类骨骼肌干细胞细胞核三维可视化的集成工作流程。

An Integrated Workflow for Three-Dimensional Visualization of Human Skeletal Muscle Stem Cell Nuclei.

作者信息

Pearson Jeremy R, Martinez-Rivera Noraida, Torres-Vasquez Irma, Gallagher Philip M, Rosa-Molinar Eduardo

机构信息

Microscopy and Analytical Imaging Research Resource Core Laboratory, University of Kansas, Lawrence, KS, USA.

Applied Physiology Laboratory and Osness Human Performance Laboratories, University of Kansas, Lawrence, KS, USA.

出版信息

Bio Protoc. 2025 Apr 20;15(8):e5281. doi: 10.21769/BioProtoc.5281.

Abstract

Skeletal muscle-specific stem cells are responsible for regenerating damaged muscle tissue following strenuous physical activity. These muscle stem cells, also known as satellite cells (SCs), can activate, proliferate, and differentiate to form new skeletal muscle cells. SCs can be identified and visualized utilizing optical and electron microscopy techniques. However, studies identifying SCs using fluorescent imaging techniques vary significantly within their methodology and lack fundamental aspects of the guidelines for rigor and reproducibility that must be included within immunohistochemical studies. Therefore, a standardized method for identifying human skeletal muscle stem cells is warranted, which will improve the reproducibility of future studies investigating satellite activity. Additionally, although it has been suggested that SC shape can change after exercise, there are currently no methods for examining SC morphology. Thus, we present an integrated workflow for three-dimensional visualization of satellite cell nuclei, validated by the spatial context of the fluorescent labeling and multichannel signal overlap. Our protocol includes, from start to finish, post-biopsy extraction and embedding, tissue sectioning, immunofluorescence, imaging steps and acquisition, and three-dimensional data post-processing. Because of the depth volume generated from the confocal microscope z-stacks, this will allow future studies to investigate the morphology of SC nuclei and their activity, instead of traditionally observing them in two-dimensional space (x, y). Key features • Detailed instructions on post-biopsy extraction and embedding, tissue sectioning, immunofluorescence, imaging steps and acquisition, and three-dimensional data post-processing of muscle stem cells. • Builds upon the validated method developed by Feng et al. [1], which was optimized for mouse tissue and fills critical gaps in existing literature. • Allows qualitative and quantitative morphological assessment of muscle stem cell nuclei in three-dimensional space. Graphical overview After the percutaneous muscle biopsy, cut ~25-100 mg of the sample and arrange it according to the desired orientation → Mount sample for sectioning, embed in mounting medium, and freeze in liquid nitrogen-cooled isopentane → Using a cryostat, generate tissue cross-sections in an alternating collection method of 20 μm intervals and place on subbed glass slides → Fix and block sections before incubating in a cocktail of primary antibodies specific for satellite cell nuclei (anti-Pax7) and muscle membrane (anti-laminin) overnight. The following day, incubate sections in the appropriate secondary antibodies (Pax7: goat anti-mouse IgG1 biotin conjugated; laminin: goat anti-rabbit Alexa Fluor 488), apply signal amplification using streptavidin-horseradish peroxidase and tyramide 594 conjugate before counterstaining with DAPI, add mounting media, and coverslip → Using a confocal microscope, search for Pax7 signal, confirm overlap with DAPI adjacent to laminin labeling, apply appropriate laser channels, determine z-stack size, and acquire images in high-pixel-resolution format → For image post-processing, in the software's three-dimensional viewer, modify individual channel histograms to optimize image quality and save as a TIFF.

摘要

骨骼肌特异性干细胞负责在剧烈体育活动后再生受损的肌肉组织。这些肌肉干细胞,也被称为卫星细胞(SCs),可以激活、增殖并分化形成新的骨骼肌细胞。利用光学和电子显微镜技术可以识别和观察卫星细胞。然而,使用荧光成像技术识别卫星细胞的研究在方法上差异很大,并且缺乏免疫组织化学研究中必须包含的严谨性和可重复性指南的基本要素。因此,需要一种标准化的方法来识别人类骨骼肌干细胞,这将提高未来研究卫星细胞活性的可重复性。此外,尽管有人提出运动后卫星细胞的形状可能会发生变化,但目前尚无检查卫星细胞形态的方法。因此,我们提出了一种用于卫星细胞核三维可视化的综合工作流程,并通过荧光标记的空间背景和多通道信号重叠进行了验证。我们的方案从头到尾包括活检后提取和包埋、组织切片、免疫荧光、成像步骤和采集以及三维数据后处理。由于共聚焦显微镜z轴堆叠产生的深度体积,这将使未来的研究能够研究卫星细胞核的形态及其活性,而不是传统地在二维空间(x,y)中观察它们。关键特性 • 关于肌肉干细胞活检后提取和包埋、组织切片、免疫荧光、成像步骤和采集以及三维数据后处理的详细说明。 • 基于Feng等人[1]开发的经过验证的方法构建,该方法针对小鼠组织进行了优化,并填补了现有文献中的关键空白。 • 允许在三维空间中对肌肉干细胞核进行定性和定量形态评估。图形概述 经皮肌肉活检后,切取约25 - 100毫克样本并按所需方向排列 → 安装样本进行切片,嵌入包埋介质中,并在液氮冷却的异戊烷中冷冻 → 使用低温恒温器,以20微米间隔的交替采集方法生成组织横截面,并放置在涂有防脱剂的载玻片上 → 在孵育针对卫星细胞核(抗Pax7)和肌膜(抗层粘连蛋白)的一抗混合物过夜之前,对切片进行固定和封闭。第二天,将切片孵育在适当的二抗(Pax7:山羊抗小鼠IgG1生物素偶联物;层粘连蛋白:山羊抗兔Alexa Fluor 488)中,使用链霉亲和素 - 辣根过氧化物酶和酪胺594偶联物进行信号放大,然后用DAPI复染,添加封片剂并盖上盖玻片 → 使用共聚焦显微镜,搜索Pax7信号,确认与层粘连蛋白标记相邻的DAPI重叠,应用适当的激光通道,确定z轴堆叠大小,并以高像素分辨率格式采集图像 → 对于图像后处理,在软件的三维查看器中,修改各个通道的直方图以优化图像质量并保存为TIFF格式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf18/12021681/2251d6f1088a/BioProtoc-15-8-5281-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验