文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人类骨骼肌类器官模型模拟胎儿肌发生并维持未分化的 PAX7 成肌祖细胞。

Human skeletal muscle organoids model fetal myogenesis and sustain uncommitted PAX7 myogenic progenitors.

机构信息

Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular Embryology, Bochum, Germany.

Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Münster, Germany.

出版信息

Elife. 2023 Nov 14;12:RP87081. doi: 10.7554/eLife.87081.


DOI:10.7554/eLife.87081
PMID:37963071
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10645425/
Abstract

In vitro culture systems that structurally model human myogenesis and promote PAX7 myogenic progenitor maturation have not been established. Here we report that human skeletal muscle organoids can be differentiated from induced pluripotent stem cell lines to contain paraxial mesoderm and neuromesodermal progenitors and develop into organized structures reassembling neural plate border and dermomyotome. Culture conditions instigate neural lineage arrest and promote fetal hypaxial myogenesis toward limb axial anatomical identity, with generation of sustainable uncommitted PAX7 myogenic progenitors and fibroadipogenic (PDGFRa+) progenitor populations equivalent to those from the second trimester of human gestation. Single-cell comparison to human fetal and adult myogenic progenitor /satellite cells reveals distinct molecular signatures for non-dividing myogenic progenitors in activated (//) and dormant (//) states. Our approach provides a robust 3D in vitro developmental system for investigating muscle tissue morphogenesis and homeostasis.

摘要

尚未建立结构上模拟人类成肌发生并促进 PAX7 成肌祖细胞成熟的体外培养系统。在这里,我们报告说,可以从诱导多能干细胞系分化出人骨骼肌类器官,使其包含轴旁中胚层和神经中胚层祖细胞,并发育成重新组装神经板边界和真皮肌节的有组织结构。培养条件会引发神经谱系停滞,并促进胎儿下轴成肌发生向肢体轴向解剖特征,产生可持续的未分化 PAX7 成肌祖细胞和纤维脂肪祖细胞(PDGFRa+)群体,相当于人类妊娠第二个三个月的水平。与人类胎儿和成人成肌祖细胞/卫星细胞的单细胞比较揭示了处于激活(//)和休眠(//)状态的非分裂成肌祖细胞的独特分子特征。我们的方法提供了一个强大的 3D 体外发育系统,可用于研究肌肉组织形态发生和动态平衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/6effeb94dd77/elife-87081-sa3-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/b387d9b85622/elife-87081-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/b1900f6df790/elife-87081-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/e84789385e4b/elife-87081-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/e8b6c21bdee9/elife-87081-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/835c5cd812fc/elife-87081-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/c1aa61ef61bf/elife-87081-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/1b4ed248d31d/elife-87081-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/cd42ee7a2bf6/elife-87081-fig3-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/600f2bd560c3/elife-87081-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/ea53284b1834/elife-87081-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/4fff9ac705b6/elife-87081-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/7191658e713c/elife-87081-fig4-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/3ea0135a05f6/elife-87081-fig4-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/74c119f92504/elife-87081-fig4-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/bdcefe3fd52e/elife-87081-fig4-figsupp6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/a2eb0f3e7be0/elife-87081-fig4-figsupp7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/492746787926/elife-87081-sa3-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/ad7e66b8500a/elife-87081-sa3-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/6effeb94dd77/elife-87081-sa3-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/b387d9b85622/elife-87081-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/b1900f6df790/elife-87081-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/e84789385e4b/elife-87081-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/e8b6c21bdee9/elife-87081-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/835c5cd812fc/elife-87081-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/c1aa61ef61bf/elife-87081-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/1b4ed248d31d/elife-87081-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/cd42ee7a2bf6/elife-87081-fig3-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/600f2bd560c3/elife-87081-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/ea53284b1834/elife-87081-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/4fff9ac705b6/elife-87081-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/7191658e713c/elife-87081-fig4-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/3ea0135a05f6/elife-87081-fig4-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/74c119f92504/elife-87081-fig4-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/bdcefe3fd52e/elife-87081-fig4-figsupp6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/a2eb0f3e7be0/elife-87081-fig4-figsupp7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/492746787926/elife-87081-sa3-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/ad7e66b8500a/elife-87081-sa3-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073c/10645425/6effeb94dd77/elife-87081-sa3-fig3.jpg

相似文献

[1]
Human skeletal muscle organoids model fetal myogenesis and sustain uncommitted PAX7 myogenic progenitors.

Elife. 2023-11-14

[2]
Generation of Skeletal Muscle Organoids from Human Pluripotent Stem Cells.

Bio Protoc. 2024-5-5

[3]
Muscle stem cells in developmental and regenerative myogenesis.

Curr Opin Clin Nutr Metab Care. 2010-5

[4]
Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for beta-catenin.

Genes Dev. 2009-4-15

[5]
iMyoblasts for ex vivo and in vivo investigations of human myogenesis and disease modeling.

Elife. 2022-1-25

[6]
Two distinct muscle progenitor populations coexist throughout amniote development.

Dev Biol. 2012-10-23

[7]
Expression patterns of FSHD-causing DUX4 and myogenic transcription factors PAX3 and PAX7 are spatially distinct in differentiating human stem cell cultures.

Skelet Muscle. 2017-6-21

[8]
Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage .

Development. 2020-6-26

[9]
Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors.

Stem Cell Reports. 2018-5-8

[10]
Generation of Skeletal Muscle Organoids from Human Pluripotent Stem Cells to Model Myogenesis and Muscle Regeneration.

Int J Mol Sci. 2022-5-4

引用本文的文献

[1]
Human Pluripotent Stem Cell-Derived Skeletal Muscle Organoid Model of Aging-Induced Sarcopenia.

J Cachexia Sarcopenia Muscle. 2025-8

[2]
Organoid-based tissue engineering for advanced tissue repair and reconstruction.

Mater Today Bio. 2025-7-15

[3]
Engineering of tissue in microphysiological systems demonstrated by modelling skeletal muscle.

Regen Biomater. 2025-6-16

[4]
Duchenne Muscular Dystrophy Patient iPSCs-Derived Skeletal Muscle Organoids Exhibit a Developmental Delay in Myogenic Progenitor Maturation.

Cells. 2025-7-7

[5]
Organoids for tissue repair and regeneration.

Mater Today Bio. 2025-6-23

[6]
Skeletal muscle, neuromuscular organoids and assembloids: a scoping review.

EBioMedicine. 2025-6-26

[7]
Microdroplet-Engineered Skeletal Muscle Organoids from Primary Tissue Recapitulate Parental Physiology with High Reproducibility.

Research (Wash D C). 2025-5-15

[8]
Multitasking muscle: engineering iPSC-derived myogenic progenitors to do more.

Front Cell Dev Biol. 2025-1-22

[9]
Skeletal organoids.

Biomater Transl. 2024-11-15

[10]
Proteomic Profiling Towards a Better Understanding of Genetic Based Muscular Diseases: The Current Picture and a Look to the Future.

Biomolecules. 2025-1-15

本文引用的文献

[1]
Engineered skeletal muscle recapitulates human muscle development, regeneration and dystrophy.

J Cachexia Sarcopenia Muscle. 2022-12

[2]
Human pluripotent stem cell-derived myogenic progenitors undergo maturation to quiescent satellite cells upon engraftment.

Cell Stem Cell. 2022-4-7

[3]
Integrated analysis of multimodal single-cell data.

Cell. 2021-6-24

[4]
Inference and analysis of cell-cell communication using CellChat.

Nat Commun. 2021-2-17

[5]
Self-Organizing 3D Human Trunk Neuromuscular Organoids.

Cell Stem Cell. 2020-9-3

[6]
A Human Skeletal Muscle Atlas Identifies the Trajectories of Stem and Progenitor Cells across Development and from Human Pluripotent Stem Cells.

Cell Stem Cell. 2020-7-2

[7]
Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage .

Development. 2020-6-26

[8]
Functionally heterogeneous human satellite cells identified by single cell RNA sequencing.

Elife. 2020-4-1

[9]
Single-cell transcriptional profiles in human skeletal muscle.

Sci Rep. 2020-1-14

[10]
Human muscle-derived CLEC14A-positive cells regenerate muscle independent of PAX7.

Nat Commun. 2019-12-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索