Suppr超能文献

轨迹变换器:探寻适用于高亮度大型强子对撞机时代的基于变换器的粒子追踪方法

Trackformers: in search of transformer-based particle tracking for the high-luminosity LHC era.

作者信息

Caron Sascha, Dobreva Nadezhda, Ferrer Sánchez Antonio, Martín-Guerrero José D, Odyurt Uraz, Ruiz de Austri Bazan Roberto, Wolffs Zef, Zhao Yue

机构信息

High-Energy Physics, Radboud University, Nijmegen, The Netherlands.

National Institute for Subatomic Physics (Nikhef), Amsterdam, The Netherlands.

出版信息

Eur Phys J C Part Fields. 2025;85(4):460. doi: 10.1140/epjc/s10052-025-14156-3. Epub 2025 Apr 25.

Abstract

High-Energy Physics experiments are facing a multi-fold data increase with every new iteration. This is certainly the case for the upcoming High-Luminosity LHC upgrade. Such increased data processing requirements forces revisions to almost every step of the data processing pipeline. One such step in need of an overhaul is the task of particle track reconstruction, a.k.a., . A Machine Learning-assisted solution is expected to provide significant improvements, since the most time-consuming step in tracking is the assignment of hits to particles or track candidates. This is the topic of this paper. We take inspiration from large language models. As such, we consider two approaches: the prediction of the next word in a sentence (next hit point in a track), as well as the one-shot prediction of all hits within an event. In an extensive design effort, we have experimented with three models based on the Transformer architecture and one model based on the U-Net architecture, performing track association predictions for collision event hit points. In our evaluation, we consider a spectrum of simple to complex representations of the problem, eliminating designs with lower metrics early on. We report extensive results, covering both prediction accuracy (score) and computational performance. We have made use of the REDVID simulation framework, as well as reductions applied to the TrackML data set, to compose five data sets from simple to complex, for our experiments. The results highlight distinct advantages among different designs in terms of prediction accuracy and computational performance, demonstrating the efficiency of our methodology. Most importantly, the results show the viability of a one-shot encoder-classifier based Transformer solution as a practical approach for the task of tracking.

摘要

高能物理实验在每一次新的迭代中都面临着数据量成倍增加的情况。即将到来的高亮度大型强子对撞机升级无疑就是这样。这种不断增加的数据处理需求迫使对数据处理流程的几乎每一步都进行修订。粒子轨迹重建任务(又称……)就是需要彻底改革的其中一个步骤。预计机器学习辅助解决方案将带来显著改进,因为跟踪中最耗时的步骤是将击中信息分配给粒子或轨迹候选对象。这就是本文的主题。我们从大语言模型中获得灵感。因此,我们考虑两种方法:预测句子中的下一个单词(轨迹中的下一个击中点),以及对一个事件内的所有击中信息进行一次性预测。在广泛的设计工作中,我们试验了三种基于Transformer架构的模型和一种基于U-Net架构的模型,对碰撞事件的击中点进行轨迹关联预测。在我们的评估中,我们考虑了从简单到复杂的一系列问题表示,尽早淘汰指标较低的设计。我们报告了广泛的结果,涵盖预测准确性(得分)和计算性能。我们利用了REDVID模拟框架以及对TrackML数据集应用的简化方法,为我们的实验构建了五个从简单到复杂的数据集。结果突出了不同设计在预测准确性和计算性能方面的明显优势,证明了我们方法的有效性。最重要的是,结果表明基于一次性编码器-分类器的Transformer解决方案作为跟踪任务的一种实用方法是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70da/12031884/80f7847a1fa1/10052_2025_14156_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验