Suppr超能文献

整合转录组学和生理学分析揭示了丛枝菌根真菌减轻甜菜盐胁迫的机制。

Integrative transcriptomic and physiological analyses uncover mechanisms by which arbuscular mycorrhizal fungi mitigate salt stress in sugar beet.

作者信息

Cui Zeyuan, Li Xiaodong, Han Pingan, Chen Rui, Dong Yinzhuang, Geng Gui, Yu Lihua, Liu Jiahui, Xu Yao, Wang Yuguang

机构信息

Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin, 150080, China.

Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, 74Xuefu Road, Harbin, 150080, China.

出版信息

Mycorrhiza. 2025 Apr 28;35(3):35. doi: 10.1007/s00572-025-01209-4.

Abstract

Sugar beet (Beta vulgaris L.) is cultivated extensively worldwide as an important cash crop, and soil salinity is a critical factor influencing both its yield and sugar content. Consequently, enhancing the salt tolerance of sugar beet is of paramount importance. Arbuscular mycorrhizal (AM) fungi form symbiotic associations with approximately 80% of vascular plants, thereby improving the adaptability of host plants to adverse conditions. However, the mechanisms by which the AM symbiosis assists sugar beet in coping with salt stress remain poorly understood. To investigate the adaptation strategies employed by AM symbiotic sugar beet under salt stress, we examined physiological and transcriptomic changes in sugar beet seedlings subjected to various treatments, using the KWS1176 variety as the experimental material. The results indicated that AM symbiotic sugar beet demonstrated superior performance under salt stress, characterized by improved seedling growth, alterations in antioxidant enzyme activities, modifications in osmoregulatory substance levels, reduced Na uptake, and enhanced K influx within the root system. Notably, most of the differentially expressed genes were implicated in pathways related to reactive oxygen species scavenging, phenylpropanoid biosynthesis, and phytohormone signal transduction. Furthermore, pivotal genes identified through weighted gene co-expression network analysis were validated via reverse transcription-quantitative PCR, revealing that the salt tolerance of AM symbiotic sugar beet may be associated with its ionic homeostasis, antioxidant enzyme activities, and regulation of photosynthesis at both transcriptional and physiological levels.

摘要

甜菜(Beta vulgaris L.)作为一种重要的经济作物在全球广泛种植,土壤盐度是影响其产量和含糖量的关键因素。因此,提高甜菜的耐盐性至关重要。丛枝菌根(AM)真菌与约80%的维管植物形成共生关系,从而提高宿主植物对不利条件的适应性。然而,AM共生帮助甜菜应对盐胁迫的机制仍知之甚少。为了研究AM共生甜菜在盐胁迫下采用的适应策略,我们以KWS1176品种为实验材料,检测了经过各种处理的甜菜幼苗的生理和转录组变化。结果表明,AM共生甜菜在盐胁迫下表现出优越的性能,其特征为幼苗生长改善、抗氧化酶活性改变、渗透调节物质水平变化、根系中Na吸收减少以及K流入增加。值得注意的是,大多数差异表达基因涉及与活性氧清除、苯丙烷生物合成和植物激素信号转导相关的途径。此外,通过加权基因共表达网络分析鉴定的关键基因通过逆转录定量PCR进行了验证,表明AM共生甜菜的耐盐性可能与其离子稳态、抗氧化酶活性以及转录和生理水平上的光合作用调节有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验