Suppr超能文献

基于干扰素-γ和衰老相关分泌表型相关基因、批量RNA和单细胞测序的综合分析,以评估胃腺癌的预后和免疫格局。

Comprehensive analysis based on IFN-γ and SASP related genes, bulk RNA and single-cell sequencing to evaluate the prognosis and immune landscape of stomach adenocarcinoma.

作者信息

Yang Jie, Han Junwei

机构信息

Department of Gastrointestinal Surgery, Xi'an Daxing Hospital, No.353 North Labor Road, Xi'an, 710016, Shanxi, China.

出版信息

Genes Genomics. 2025 Apr 28. doi: 10.1007/s13258-025-01646-7.

Abstract

BACKGROUND

Stomach adenocarcinoma (STAD) represents the predominant subtype of gastric cancer, known for its drug resistance, unfavorable prognosis, and low cure rates. IFN-γ serves as a cytokine generated by immune cells, instrumental in tumor immune clearance and essential to the tumor microenvironment. The aging-associated secretory phenotype (SASP) can modify the local tissue environment, facilitating gastric cancer progression and chemotherapy resistance.

OBJECTIVE

This study intends to identify STAD subtypes based on IFN-γ and SASP-related genes and to develop a risk prognostic model for predicting patient survival, tumor immune microenvironment, and responses to drug treatment.

METHODS

The genomic and clinical datasets originate from the Cancer Genome Atlas (TCGA) database, while the genes associated with IFN-γ and SASP come from pertinent scholarly articles. We discovered the prognostic genes linked to IFN-γ and SASP in STAD using Cox regression analysis. Next, we applied non-negative matrix factorization (NMF) to categorize LIHC into distinct molecular subtypes, identifying differentially expressed genes across these subtypes. Following this, we developed a predictive model using Cox and LASSO regression analyses to stratify patients into specific risk categories, validating the model to assess the prognostic significance of the identified signatures. Lastly, we integrated single-cell data to elucidate the immune landscape of STAD and identified potential drugs along with their sensitivity profiles.

RESULTS

We identified 17 prognostic genes related to IFN-γ and SASP, successfully classifying patients into two distinct molecular subtypes. These subtypes exhibited notable differences in immune profiles and prognostic outcomes. We pinpointed three differentially expressed genes to establish risk characteristics and created a prognostic model capable of accurately predicting patient outcomes. Our findings revealed a strong association between STAD and the extracellular matrix, low-risk group exhibited favorable prognosis, and may derive greater benefits from immunotherapy.

CONCLUSION

We developed a risk model using IFN-γ and SASP-associated genes to predict the prognosis of STAD patients more accurately. Additionally, we assessed the immune landscape of STAD by integrating bulk RNA and single-cell sequencing analyses. This approach may yield valuable insights for clinical decision-making and immunotherapy strategies in STAD.

摘要

背景

胃腺癌(STAD)是胃癌的主要亚型,以其耐药性、预后不良和治愈率低而闻名。IFN-γ是一种由免疫细胞产生的细胞因子,在肿瘤免疫清除中起作用,对肿瘤微环境至关重要。衰老相关分泌表型(SASP)可改变局部组织环境,促进胃癌进展和化疗耐药。

目的

本研究旨在基于IFN-γ和SASP相关基因识别STAD亚型,并开发一种风险预后模型,用于预测患者生存、肿瘤免疫微环境及药物治疗反应。

方法

基因组和临床数据集来自癌症基因组图谱(TCGA)数据库,而与IFN-γ和SASP相关的基因来自相关学术文章。我们使用Cox回归分析在STAD中发现与IFN-γ和SASP相关的预后基因。接下来,我们应用非负矩阵分解(NMF)将LIHC分类为不同的分子亚型,识别这些亚型中差异表达的基因。在此之后,我们使用Cox和LASSO回归分析开发了一个预测模型,将患者分层为特定风险类别,验证该模型以评估所识别特征的预后意义。最后,我们整合单细胞数据以阐明STAD的免疫格局,并识别潜在药物及其敏感性概况。

结果

我们识别出17个与IFN-γ和SASP相关的预后基因,成功将患者分为两种不同的分子亚型。这些亚型在免疫特征和预后结果方面表现出显著差异。我们确定了三个差异表达基因以建立风险特征,并创建了一个能够准确预测患者预后的预后模型。我们的研究结果揭示了STAD与细胞外基质之间的强关联,低风险组预后良好,可能从免疫治疗中获得更大益处。

结论

我们使用与IFN-γ和SASP相关的基因开发了一种风险模型,以更准确地预测STAD患者的预后。此外,我们通过整合批量RNA和单细胞测序分析评估了STAD的免疫格局。这种方法可能为STAD的临床决策和免疫治疗策略提供有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验