Suppr超能文献

用于提高柔性n型MoTiCT -MXene热电效率的缺陷工程

Defect Engineering for Flexible n-Type MoTiCT -MXene Thermoelectric Efficiency Enhancement.

作者信息

Li Jiahui, Sun Zhuxi, Song Weidong, Jin Zhangping, Zhan Yedong, Yin Hang, Huang Zhangfan, Wang Baoxiu, Shi Qiuwei, Xie Yannan

机构信息

State Key Laboratory of Flexible Electronics & Institute of Advanced Materials (IAM), College of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210023, China.

College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.

出版信息

ACS Appl Mater Interfaces. 2025 May 7;17(18):26984-26993. doi: 10.1021/acsami.5c01220. Epub 2025 Apr 28.

Abstract

With the rapid advancement of wearable electronics, the demand for efficient portable power supplies has become increasingly urgent. Thermoelectric materials, which can directly convert heat, such as body heat, into electricity, offer a promising avenue for sustainable energy supplementation. However, achieving a high thermoelectric performance in flexible materials suitable for body heat harvesting remains a significant challenge. Here, we introduce a strategy for synergistically tuning surface oxygen defects and optimizing microstructures in low-dimensional semiconductor materials, resulting in flexible, ammoniated dual-transition metal carbide -MXene N-MoTiCT with enhanced properties. Theoretical and experimental analyses reveal that high-temperature ammoniation produces a low-oxygen-functionalized surface, reduces interlayer spacing, and minimizes defect density, thereby significantly increasing the electrical conductivity. Nitrogen atoms incorporated at the nanosheet terminals further increase the electron density near the Fermi level, resulting in an enhanced Seebeck coefficient. Consequently, N-MoTiCT films treated at 900 K achieve an electrical conductivity of 1.03 × 10 S m, a Seebeck coefficient of -27.8 μV K, and a power factor of 7.99 μW m K at room temperature, nearly 1.2-fold higher than that of untreated materials, while retaining excellent flexibility. Moreover, a wearable thermoelectric generator constructed from these N-MoTiCT films produces a voltage of 1.4 mV under a temperature gradient of approximately 12 K between human skin and ambient air, underscoring its excellent capacity for harvesting low-grade thermal energy. These findings establish a paradigm for the development of flexible, high-performance thermoelectric materials, paving the way for next-generation wearable and industrial energy applications.

摘要

随着可穿戴电子设备的迅速发展,对高效便携式电源的需求变得越来越迫切。热电材料能够直接将诸如人体热量等热量转化为电能,为可持续能源补充提供了一条有前景的途径。然而,在适用于人体热量收集的柔性材料中实现高热电性能仍然是一项重大挑战。在此,我们介绍一种策略,用于协同调节低维半导体材料的表面氧缺陷并优化其微观结构,从而得到具有增强性能的柔性氨化双过渡金属碳化物——MXene N-MoTiCT。理论和实验分析表明,高温氨化产生低氧官能化表面,减小层间距,并使缺陷密度最小化,从而显著提高电导率。掺入纳米片末端的氮原子进一步增加费米能级附近的电子密度,导致塞贝克系数增强。因此,在900 K下处理的N-MoTiCT薄膜在室温下实现了1.03×10 S m的电导率、-27.8 μV K的塞贝克系数和7.99 μW m K的功率因数,比未处理材料高出近1.2倍,同时保持了优异的柔韧性。此外,由这些N-MoTiCT薄膜构建的可穿戴热电发电机在人体皮肤与环境空气之间约12 K的温度梯度下产生1.4 mV的电压,突出了其收集低品位热能的出色能力。这些发现为柔性、高性能热电材料的开发建立了一种范例,为下一代可穿戴和工业能源应用铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验