Suppr超能文献

一款针对癌症患者的移动健康应用程序中的教育与症状报告:混合方法开发与验证研究

Education and Symptom Reporting in an mHealth App for Patients With Cancer: Mixed Methods Development and Validation Study.

作者信息

Muñoz Olivar Carolina, Pineiro Miguel, Gómez Quintero Juan Sebastián, Avendaño-Vásquez Carlos Javier, Ormeño-Arriagada Pablo, Palma Rivadeneira Silvia, Taramasco Toro Carla

机构信息

PhD in Health Sciences, Faculty of Medicine, Antonio Nariño University, Bogotá, 111511, Colombia.

Center for Cancer Prevention and Control (CECAN), Santiago, Chile.

出版信息

JMIR Hum Factors. 2025 Apr 28;12:e60169. doi: 10.2196/60169.

Abstract

BACKGROUND

The widespread prevalence of cancer across the globe demands cutting-edge solutions for its treatment. Current cancer therapies, notably chemotherapy, pose challenges due to their side effects. The early detection and management of the side effects are vital but complex. This study introduces a mobile health app designed to bridge the communication gaps between patients with cancer and health care providers. Hence, it allows patients to report symptoms immediately and also enables proactive symptom management by health care providers.

OBJECTIVE

This study has 2 objectives: first, to design a cancer-focused mobile health app that integrates educational content and real-time symptom reporting for chemotherapy patients. Second, to validate and evaluate the app quality using the Mobile App Rating Scale (MARS). The app seeks to foster health care communication, reduce hospital readmissions, and optimize symptom management, contributing to a more impactful patient experience.

METHODS

This mixed-methods study details the development and validation of mobile health applications. The app was designed by a multidisciplinary team, including nurses, medical professionals, pharmaceutical chemists, computer engineers, and software developers, using agile methodologies. For validation, the app was assessed by 13 evaluators, including clinical professionals (nurses and physicians) and engineers. The evaluation included technical performance analysis using Google tools and quality assessment using the MARS, which measures engagement, functionality, aesthetics, and information quality.

RESULTS

Performance metrics highlighted areas for improvement, with loading times showing delays in displaying content. Meanwhile, the response time of the app was moderate, and visual stability remained excellent. The app achieved an overall MARS score of 3.75 (SD 0.42), indicating consistent quality, with functionality scoring the highest (4.35; SD 0.52) and engagement the lowest (3.31; SD 0.61). The reliability of the MARS was confirmed (interclass correlation coefficient: 0.84; 95% CI: 0.72-0.92). Evaluators unanimously praised the app's potential benefits for patients and clinical professionals while identifying areas for improvement such as customization, onboarding guidance, and navigation.

CONCLUSIONS

The CONTIGO app showed strengths in functionality, usability, and information quality, supported by robust security measures. However, areas such as user interactivity and engagement require improvement. Future refinements will integrate insights from patients with cancer to address user-specific needs and enhance the oncology care experience.

摘要

背景

癌症在全球范围内广泛流行,需要前沿的治疗方案。当前的癌症治疗方法,尤其是化疗,因其副作用而带来挑战。副作用的早期发现和管理至关重要但却很复杂。本研究推出了一款移动健康应用程序,旨在弥合癌症患者与医疗服务提供者之间的沟通差距。因此,它允许患者立即报告症状,也使医疗服务提供者能够进行主动的症状管理。

目的

本研究有两个目标:第一,设计一款以癌症为重点的移动健康应用程序,该程序为化疗患者整合教育内容和实时症状报告。第二,使用移动应用程序评分量表(MARS)验证和评估应用程序质量。该应用程序旨在促进医疗沟通、减少医院再入院率并优化症状管理,从而带来更有影响力的患者体验。

方法

这项混合方法研究详细介绍了移动健康应用程序的开发和验证过程。该应用程序由一个多学科团队设计,成员包括护士、医学专业人员、药物化学家、计算机工程师和软件开发人员,采用敏捷方法。为了进行验证,该应用程序由13名评估人员进行评估,包括临床专业人员(护士和医生)和工程师。评估包括使用谷歌工具进行技术性能分析以及使用MARS进行质量评估,MARS用于衡量参与度、功能、美观性和信息质量。

结果

性能指标突出了需要改进的方面,加载时间显示在显示内容时有延迟。同时,应用程序的响应时间适中,视觉稳定性仍然出色。该应用程序的MARS总评分为3.75(标准差0.42),表明质量一致,其中功能得分最高(4.35;标准差0.52),参与度得分最低(3.31;标准差0.61)。MARS的可靠性得到了确认(组内相关系数:0.84;95%置信区间:0.72 - 0.92)。评估人员一致称赞该应用程序对患者和临床专业人员的潜在益处,同时指出了需要改进的方面,如定制、入门指导和导航。

结论

CONTIGO应用程序在功能、可用性和信息质量方面表现出优势,并得到了强大的安全措施支持。然而,用户交互性和参与度等方面需要改进。未来的改进将整合癌症患者的见解,以满足用户特定需求并提升肿瘤护理体验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/001c/12052293/eb6aeb7ea8fd/humanfactors-v12-e60169-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验