Suppr超能文献

膝关节力学的动态模拟:着陆过程中髌腱应力的个体化多力矩有限元建模

Dynamic simulation of knee joint mechanics: individualized multi-moment finite element modelling of patellar tendon stress during landing.

作者信息

Li Fengping, Sun Dong, Song Yang, Zhou Zhanyi, Wang Dongxu, Cen Xuanzhen, Zhang Qiaolin, Gao Zixiang, Gu Yaodong

机构信息

Faculty of Sports Science, Ningbo University, Ningbo, China.

Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.

出版信息

J Biomech. 2025 Jun;186:112730. doi: 10.1016/j.jbiomech.2025.112730. Epub 2025 Apr 23.

Abstract

Patellar tendinopathy is prevalent in sports requiring high jumping demands, and understanding the in vivo biomechanical behavior of the patellar tendon (PT) during landing is crucial for developing effective injury prevention and rehabilitation strategies. This study investigates the in vivo biomechanical behavior of the PT during the landing phase of a stop-jump task, integrating musculoskeletal modelling, finite element analysis (FEA), and a high-speed dual fluoroscopic imaging system (DFIS). A subject-specific knee joint model was constructed from CT, MRI, and dynamic X-ray data for a 27-year-old male (178 cm, 68 kg) at six time points during landing. Musculoskeletal simulations were used to estimated knee joint moments and quadriceps muscle forces, which were then applied to the finite element models. DFIS ensured accurate 3D spatial alignment of the models. Ridge regression analysis explored the relationship between applied biomechanical loads and the maximum equivalent (von Mises) stress in the PT. Maximum PT stress was observed at the bone attachment sites, with the highest stress (94.44 MPa) at initial ground contact, decreasing to a minimum of 16.37 MPa during landing. Regression analysis demonstrated a significant correlation (R = 0.859, P < 0.001) between knee flexion moments, quadriceps muscle forces, and maximum PT stress, identifying these factors as key determinants of PT loading. This study underscores the importance of knee flexion moments and quadriceps muscle forces in influencing PT stress during landing. Future studies should include larger cohort to validate these results and explore the potential of machine learning for real-time injury risk prediction.

摘要

髌腱病在需要高跳跃要求的运动中很普遍,了解髌腱(PT)在着陆过程中的体内生物力学行为对于制定有效的损伤预防和康复策略至关重要。本研究通过整合肌肉骨骼建模、有限元分析(FEA)和高速双荧光透视成像系统(DFIS),研究了在急停跳跃任务着陆阶段PT的体内生物力学行为。根据一名27岁男性(身高178厘米,体重68千克)在着陆过程中六个时间点的CT、MRI和动态X射线数据构建了一个特定个体的膝关节模型。肌肉骨骼模拟用于估计膝关节力矩和股四头肌力量,然后将其应用于有限元模型。DFIS确保了模型的精确三维空间对齐。岭回归分析探讨了施加的生物力学负荷与PT中最大等效(冯·米塞斯)应力之间的关系。在骨附着部位观察到PT的最大应力,在初始地面接触时应力最高(94.44兆帕),在着陆过程中降至最低16.37兆帕。回归分析表明膝关节屈曲力矩、股四头肌力量与PT最大应力之间存在显著相关性(R = 0.859,P < 0.001),确定这些因素是PT负荷的关键决定因素。本研究强调了膝关节屈曲力矩和股四头肌力量在着陆过程中影响PT应力的重要性。未来的研究应纳入更大的队列以验证这些结果,并探索机器学习在实时损伤风险预测方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验