Suppr超能文献

脊髓脊索瘤与软骨肉瘤长期生存预测的风险计算器:一项全国性分析。

Risk calculator for long-term survival prediction of spinal chordoma versus chondrosarcoma: a nationwide analysis.

作者信息

Ghaith Abdul Karim, Yang Xinlan, Al-Mistarehi Abdel-Hameed, Tang Linda, Kim Nathan, Weinberg Joshua, Khalifeh Jawad, Xia Yuanxuan, Foster Chase H, Redmond Kristin, Lee Sang, Khan Majid, Xu David, Khalilullah Taha, Zaitoun Khaled, Theodore Nicholas, Lubelski Daniel

机构信息

Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe Street/Meyer 5-181, Baltimore, MD, 21287, USA.

Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan.

出版信息

J Neurooncol. 2025 Apr 28. doi: 10.1007/s11060-025-05063-4.

Abstract

PURPOSE

Chordomas and chondrosarcomas are rare, aggressive spinal bone tumors with distinct origins, biological behavior, and treatment challenges, primarily due to their resistance to conventional chemotherapy and radiation. This study aimed to compare clinical characteristics, treatment strategies, and long-term outcomes between spinal chordoma and chondrosarcoma, and to develop a robust machine learning-based model for individualized survival prediction.

METHODS

We conducted a retrospective analysis using the National Cancer Database (NCDB) to identify patients diagnosed with spinal chordoma or chondrosarcoma from 2004 to 2017. Demographics, tumor characteristics, comorbidity indices, treatment modalities (surgery, radiation, chemotherapy), and outcomes were extracted. Kaplan-Meier and weighted log-rank analyses assessed overall survival (OS) at predefined intervals (30-day, 90-day, 1-year, 5-year, 10-year). Twelve machine learning and deep learning models were trained to predict 10-year OS. Model performance was evaluated using AUC, Brier Score, and Concordance Index (C-index). A web-based risk calculator was developed using the best-performing ensemble model.

RESULTS

A total of 3175 patients were included (chordoma: n = 1204; chondrosarcoma: n = 1971). Chordoma patients were significantly older, travelled farther for treatment, and had smaller tumors with lower rates of metastatic disease at presentation. Chondrosarcoma patients more frequently underwent gross total resection, while chordoma patients received more radiation therapy, often with higher doses and more frequent use of proton therapy. Kaplan-Meier analysis revealed that chordoma patients had superior 10-year OS compared to chondrosarcoma patients (p < 0.0001). Among those receiving radiation, chondrosarcoma patients treated with radiation alone had the poorest survival. DeepSurv achieved the highest C-index (0.83) and lowest Brier Score (0.14), while ensemble models integrating Gradient Boosting and CatBoost also demonstrated strong performance (AUC > 0.80). Age, tumor type, and radiation therapy were identified as the most influential predictors using SHAP analysis. A publicly accessible, web-based calculator was developed for individualized survival prediction.

CONCLUSION

Spinal chordoma and chondrosarcoma differ significantly in clinical features and outcomes, with chordoma showing more favorable long-term survival. The findings highlight the importance of GTR and individualized radiation therapy in optimizing outcomes. The predictive model employing complicated machine learning models provides a valuable tool for estimating long-term survival and guiding personalized treatment strategies, though external validation is needed to strengthen its generalizability and clinical utility.

摘要

目的

脊索瘤和软骨肉瘤是罕见的侵袭性脊柱骨肿瘤,起源、生物学行为各异,治疗面临挑战,主要是因为它们对传统化疗和放疗具有抗性。本研究旨在比较脊柱脊索瘤和软骨肉瘤的临床特征、治疗策略及长期预后,并开发一种强大的基于机器学习的模型用于个性化生存预测。

方法

我们使用国家癌症数据库(NCDB)进行回顾性分析,以确定2004年至2017年期间被诊断为脊柱脊索瘤或软骨肉瘤的患者。提取人口统计学信息、肿瘤特征、合并症指数、治疗方式(手术、放疗、化疗)及预后情况。采用Kaplan-Meier法和加权对数秩检验分析在预定时间间隔(30天、90天、1年、5年、10年)的总生存率(OS)。训练了12种机器学习和深度学习模型来预测10年OS。使用AUC、Brier评分和一致性指数(C指数)评估模型性能。利用表现最佳的集成模型开发了一个基于网络的风险计算器。

结果

共纳入3175例患者(脊索瘤:n = 1204;软骨肉瘤:n = 1971)。脊索瘤患者年龄显著更大,就医距离更远,肿瘤较小,就诊时转移疾病发生率较低。软骨肉瘤患者更常接受根治性全切除,而脊索瘤患者接受更多放疗,且放疗剂量通常更高,质子治疗使用更频繁。Kaplan-Meier分析显示,脊索瘤患者的10年OS优于软骨肉瘤患者(p < 0.0001)。在接受放疗的患者中,单纯接受放疗的软骨肉瘤患者生存率最差。DeepSurv模型的C指数最高(0.83),Brier评分最低(0.14),而整合梯度提升和CatBoost的集成模型也表现出强大性能(AUC > 0.80)。使用SHAP分析确定年龄、肿瘤类型和放疗是最具影响力的预测因素。开发了一个可公开访问的基于网络的计算器用于个性化生存预测。

结论

脊柱脊索瘤和软骨肉瘤在临床特征和预后方面存在显著差异,脊索瘤的长期生存率更优。研究结果凸显了根治性全切除和个性化放疗对优化预后的重要性。采用复杂机器学习模型的预测模型为估计长期生存和指导个性化治疗策略提供了有价值的工具,不过需要外部验证来增强其通用性和临床实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验