一种用于弥漫性大B细胞淋巴瘤早期检测、治疗反应监测和预后预测的6-tsRNA标志物。

A 6-tsRNA signature for early detection, treatment response monitoring, and prognosis prediction in diffuse large B cell lymphoma.

作者信息

Rao Jun, Xia Lin, Li Qiong, Ma NaYa, Li Xinlei, Li Jiali, Zhu Lidan, Zhao Pan, Zeng Yunjing, Zhou Sha, Guo Huanping, Lin Shijia, Dong Song, Lou Shifeng, Fan Fangyi, Wei Jin, Zhong Jiang F, Gao Li, Li Shengwen Calvin, Zhang Xi

机构信息

Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.

State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China.

出版信息

Blood Cancer J. 2025 Apr 28;15(1):79. doi: 10.1038/s41408-025-01267-z.

Abstract

Diffuse large B-cell lymphoma (DLBCL) presents considerable clinical challenges due to its aggressive nature and diverse clinical progression. New molecular biomarkers are urgently needed for outcome prediction. We analyzed blood samples from DLBCL patients and healthy individuals using short, non-coding RNA sequencing. A classifier based on six tsRNAs was developed through random forest and primary component analysis. This classifier, established using Cox proportional hazards modeling with repeated 10-fold cross-validation on an internal cohort of 100 samples analyzed using RT-qPCR, effectively identified high-risk patients with significantly lower overall survival compared to low-risk patients (Hazard ratio: 6.657, 95%CI 2.827-15.68, P = 0.0006). Validation in an external cohort of 160 samples using RT-qPCR confirmed the classifier's robust performance. High-risk status was strongly associated with disease histological subtype, stage, and International Prognostic Index scores. Integration of the classifier into the IPI model enhanced the precision and consistency of prognostic predictions. A dynamic study revealed that patients experiencing a 1.06-fold decrease after one therapy cycle (early molecular response) exhibited better treatment outcomes and prognosis. Furthermore, the 6-tsRNA signature accurately differentiated healthy individuals from DLBCL (AUC 0.882, 95%CI 0.826-0.939). These findings underscore the potential of the identified 6-tsRNA profile as a biomarker for monitoring treatment effectiveness and predicting DLBCL outcomes.

摘要

弥漫性大B细胞淋巴瘤(DLBCL)因其侵袭性本质和多样的临床进展而带来了相当大的临床挑战。迫切需要新的分子生物标志物来进行预后预测。我们使用短链非编码RNA测序分析了DLBCL患者和健康个体的血液样本。通过随机森林和主成分分析开发了一种基于六种tsRNA的分类器。该分类器是使用Cox比例风险模型在100个样本的内部队列上进行重复10倍交叉验证建立的,使用RT-qPCR进行分析,与低风险患者相比,它有效地识别出总生存期显著更低的高风险患者(风险比:6.657,95%CI 2.827-15.68,P = 0.0006)。在160个样本的外部队列中使用RT-qPCR进行验证,证实了该分类器的稳健性能。高风险状态与疾病组织学亚型、分期和国际预后指数评分密切相关。将该分类器整合到IPI模型中提高了预后预测的准确性和一致性。一项动态研究表明,在一个治疗周期后经历1.06倍下降(早期分子反应)的患者表现出更好的治疗结果和预后。此外,6-tsRNA特征能够准确地区分健康个体和DLBCL患者(AUC 0.882,95%CI 0.826-0.939)。这些发现强调了所确定的6-tsRNA谱作为监测治疗效果和预测DLBCL预后生物标志物的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/763f/12037784/0dfb3ff7836a/41408_2025_1267_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索