Suppr超能文献

岷江柏木迁地保护的遗传多样性分析及保护策略建议

Genetic diversity analysis and conservation strategy recommendations for ex situ conservation of Cupressus chengiana.

作者信息

Chen Chaoqun, Chang He, Pang Xueyong, Liu Qinghua, Xue Lianfang, Yin Chunying

机构信息

Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & Maoxian Mountain Ecosystem Research Station, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, P. R. China.

University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China.

出版信息

BMC Plant Biol. 2025 Apr 28;25(1):552. doi: 10.1186/s12870-025-06581-z.

Abstract

BACKGROUND

Cupressus chengiana is mainly distributed in the Hengduan Mountains area in China. It is one of the Class II endangered plants, ex situ conservation is often used to the affected C. chengiana population due to the construction of the power station. However, population fragmentation and inbreeding in the ex situ conservation have led to decline in genetic diversity. It is therefore important to clarify the differences in genetic diversity between native populations and ex situ population.

RESULTS

In this study, we used Genotyping-by-Sequencing to assess the genetic diversity of 30 C. chengiana trees from four populations in the Dadu River Basin, southwest China, including one ex situ conserved population (DK) and three native populations (BW, SA, RJ). The results showed that compared with the native populations, the DK population showed higher genetic diversity. Among the three native populations, SA population may experience inbreeding and has low genetic diversity. The population structure analysis further revealed that the DK population had higher gene flow and lower differentiation than other three populations. For ex situ populations, the primary determinant of genetic diversity is the genetic variation present in the seedlings sourced from natural populations.

CONCLUSION

These findings support the feasibility of ex situ conservation for C. chengiana conservation. This study provides a scientific foundation for the preservation, management, and restoration of C. chengiana, and would offer valuable insights for the conservation of other endangered plants.

摘要

背景

岷江柏木主要分布于中国横断山脉地区。它是国家二级保护植物之一,由于电站建设,受影响的岷江柏木种群常采用迁地保护。然而,迁地保护中的种群碎片化和近亲繁殖导致了遗传多样性的下降。因此,明确原生种群和迁地种群之间的遗传多样性差异具有重要意义。

结果

在本研究中,我们利用简化基因组测序技术评估了来自中国西南部大渡河流域四个种群的30株岷江柏木的遗传多样性,其中包括一个迁地保护种群(DK)和三个原生种群(BW、SA、RJ)。结果表明,与原生种群相比,DK种群具有更高的遗传多样性。在三个原生种群中,SA种群可能经历了近亲繁殖,遗传多样性较低。种群结构分析进一步表明,DK种群比其他三个种群具有更高的基因流和更低的分化程度。对于迁地种群而言,遗传多样性的主要决定因素是来自自然种群的幼苗中存在的遗传变异。

结论

这些发现支持了岷江柏木迁地保护的可行性。本研究为岷江柏木的保护、管理和恢复提供了科学依据,并将为其他濒危植物的保护提供有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ce0/12039293/44a4e3f06adf/12870_2025_6581_Fig1_HTML.jpg

相似文献

3
Genetic diversity and conservation implications of four Cupressus species in China as revealed by microsatellite markers.
Biochem Genet. 2014 Apr;52(3-4):181-202. doi: 10.1007/s10528-013-9638-1. Epub 2013 Dec 3.
4
A study of conservation genetics in Cupressus chengiana, an endangered endemic of China, using ISSR markers.
Biochem Genet. 2006 Feb;44(1-2):31-45. doi: 10.1007/s10528-006-9011-8. Epub 2006 May 3.
5
[Phenotypic variations in cones and seeds of natural Cupressus chengiana populations in China].
Ying Yong Sheng Tai Xue Bao. 2017 Mar 18;28(3):748-756. doi: 10.13287/j.1001-9332.201703.001.
7
Managing genomic diversity in conservation programs of Chinese domestic chickens.
Genet Sel Evol. 2023 Dec 14;55(1):92. doi: 10.1186/s12711-023-00866-3.
9
Genome-wide diversity evaluation and core germplasm extraction in ex situ conservation: A case of golden .
Evol Appl. 2023 Aug 19;16(9):1519-1530. doi: 10.1111/eva.13584. eCollection 2023 Sep.
10
Genetic diversity in the US ex situ populations of the endangered Puerto Rican Boa, Chilabothrus inornatus.
Zoo Biol. 2020 May;39(3):205-213. doi: 10.1002/zoo.21535. Epub 2020 Feb 13.

本文引用的文献

1
High genetic load without purging in caribou, a diverse species at risk.
Curr Biol. 2024 Mar 25;34(6):1234-1246.e7. doi: 10.1016/j.cub.2024.02.002. Epub 2024 Feb 27.
3
Genome-wide diversity evaluation and core germplasm extraction in ex situ conservation: A case of golden .
Evol Appl. 2023 Aug 19;16(9):1519-1530. doi: 10.1111/eva.13584. eCollection 2023 Sep.
4
TBtools-II: A "one for all, all for one" bioinformatics platform for biological big-data mining.
Mol Plant. 2023 Nov 6;16(11):1733-1742. doi: 10.1016/j.molp.2023.09.010. Epub 2023 Sep 22.
5
Genetic diversity and population structure of Polygonatum cyrtonema Hua in China using SSR markers.
PLoS One. 2023 Aug 31;18(8):e0290605. doi: 10.1371/journal.pone.0290605. eCollection 2023.
6
Genetic diversity in ex situ populations of the endangered Leontopithecus chrysomelas and implications for its conservation.
PLoS One. 2023 Aug 2;18(8):e0288097. doi: 10.1371/journal.pone.0288097. eCollection 2023.
7
Identification of the Efficacy of Ex Situ Conservation of Based on Its ETS-SSR Markers.
Plants (Basel). 2023 Jul 17;12(14):2670. doi: 10.3390/plants12142670.
8
9
Retaining natural vegetation to safeguard biodiversity and humanity.
Conserv Biol. 2023 Jun;37(3):e14040. doi: 10.1111/cobi.14040. Epub 2023 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验