Suppr超能文献

在体内代谢控制分析后对L-半胱氨酸输出蛋白进行交换,改进了工程化大肠杆菌生产L-半胱氨酸的工艺。

Exchange of the L-cysteine exporter after in-vivo metabolic control analysis improved the L-cysteine production process with engineered Escherichia coli.

作者信息

Cerbon Daniel Alejandro Caballero, Weuster-Botz Dirk

机构信息

School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany.

出版信息

Microb Cell Fact. 2025 Apr 28;24(1):95. doi: 10.1186/s12934-025-02715-y.

Abstract

BACKGROUND

L-Cysteine is a proteinogenic amino acid of high pharmaceutical and industrial interest. However, the fermentation process for L-cysteine production is faced with multiple obstacles, like the toxicity of L-cysteine for the cells, the low carbon yield of the product, and the low selectivity of the L-cysteine exporter. In previous work, in-vivo metabolic control analysis (MCA) applied to an L-cysteine fed-batch production process with E. coli, followed by the targeted metabolic engineering to reduce an intracellular O-acetylserine (OAS) deficiency, resulted in a significant improvement of the L-cysteine production process with the new producer strain.

RESULTS

In this work, in-vivo MCA was applied to the L-cysteine fed-batch production process with the new producer strain (E. coli W3110 pCysK). The MCA indicated that a simultaneous increase in the exporter's expression and selectivity is required to increase the L-cysteine production further. The exchange of the L-cysteine exporter YdeD present in the plasmid pCysK for the potentially more selective exporter YfiK led to an increase of the maximal L-cysteine concentration by the end of the fed-batch process of 37% to a final concentration of 33.8 g L. The L-cysteine production could also be extended for at least 20 h due to conserved cellular activity as a result of the reduction of carbon loss as OAS.

CONCLUSIONS

It could be shown that the in-vivo MCA methodology can be utilised iteratively with cells from the production process to pinpoint targets for further strain optimisation towards a significant increase in the L-cysteine production with E. coli. The use of this technology in combination with process engineering to adapt the fed-batch process to the modified strain may achieve a further improvement of the process performance.

摘要

背景

L-半胱氨酸是一种具有很高制药和工业价值的蛋白质ogenic氨基酸。然而,L-半胱氨酸生产的发酵过程面临多重障碍,如L-半胱氨酸对细胞的毒性、产物的低碳产率以及L-半胱氨酸输出蛋白的低选择性。在之前的工作中,将体内代谢控制分析(MCA)应用于大肠杆菌的L-半胱氨酸补料分批生产过程,随后进行靶向代谢工程以减少细胞内O-乙酰丝氨酸(OAS)缺乏,从而使新生产菌株的L-半胱氨酸生产过程得到显著改善。

结果

在这项工作中,将体内MCA应用于新生产菌株(大肠杆菌W3110 pCysK)的L-半胱氨酸补料分批生产过程。MCA表明,需要同时提高输出蛋白的表达和选择性,以进一步提高L-半胱氨酸产量。将质粒pCysK中存在的L-半胱氨酸输出蛋白YdeD替换为可能更具选择性的输出蛋白YfiK,导致补料分批过程结束时最大L-半胱氨酸浓度增加37%,最终浓度达到33.8 g/L。由于作为OAS的碳损失减少,细胞活性得以保留,L-半胱氨酸生产也可延长至少20小时。

结论

可以证明,体内MCA方法可与生产过程中的细胞迭代使用,以确定进一步优化菌株的靶点,从而显著提高大肠杆菌的L-半胱氨酸产量。将该技术与过程工程相结合,使补料分批过程适应改良菌株,可能会进一步提高过程性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a364/12038998/6ce83c51ba83/12934_2025_2715_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验