Suppr超能文献

用于高效二元和三元有机太阳能电池的具有高迁移率的中带隙、完全非稠合电子受体。

Medium-Band-Gap, Fully Nonfused Electron Acceptors with High for High-Efficiency Binary and Ternary Organic Solar Cells.

作者信息

Wang Xingjie, Shi Yaohua, Li Miao, Shen Shuaishuai, Zhou Yuanyuan, Qin Ruiping, Tang Xiaodan, Song Jinsheng, Wang Gongke

机构信息

School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China.

Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China.

出版信息

ACS Appl Mater Interfaces. 2025 May 7;17(18):26940-26947. doi: 10.1021/acsami.5c02663. Epub 2025 Apr 28.

Abstract

Fully nonfused electron acceptors (FNEAs) have shown a huge potential for organic solar cells (OSCs). Herein, two medium-band-gap FNEAs, namely, and , are developed based on the "benzene-dithiophene-benzene" skeleton, with the assistance of alkoxyl side chains to form S···O conformational locks. Two FNEAs exhibit medium optical gaps ( ≈1.70 eV) coupled with high lowest unoccupied molecular orbital (LUMO) levels (∼ -3.71 eV), contributing to enhanced open-circuit voltage () for OSCs. Side chain engineering is applied to the regulation of molecular crystallinity, active layer morphology, and molecular orientation in films. Compared to , the blend film displays homogeneous morphology, suppresses the bimolecular recombination, and has high and balanced charge mobility with wide-band-gap polymer as a donor. As a result, the -based device can achieve a higher power conversion efficiency (PCE) of 10.19% with a high of 1.00 V. Subsequently, as a third component is employed to fabricate ternary OSCs. A :: ternary device can accomplish an impressive PCE of 19.37%. The research provides a rational molecular design strategy for high-efficiency, medium-band-gap FNEAs.

摘要

全非稠合电子受体(FNEAs)在有机太阳能电池(OSCs)中显示出巨大潜力。在此,基于“苯-二噻吩-苯”骨架开发了两种中带隙FNEAs,即 和 ,借助烷氧基侧链形成S···O构象锁。两种FNEAs表现出中等光学带隙(≈1.70 eV)并伴有较高的最低未占据分子轨道(LUMO)能级(∼ -3.71 eV),有助于提高OSCs的开路电压( )。侧链工程应用于调节分子结晶度、活性层形态以及薄膜中的分子取向。与 相比, 共混膜显示出均匀的形态,抑制了双分子复合,并且与宽带隙聚合物 作为供体时具有高且平衡的电荷迁移率。结果,基于 的器件能够实现10.19%的更高功率转换效率(PCE)以及1.00 V的高 。随后,采用 作为第三组分来制备三元OSCs。 :: 三元器件能够实现令人印象深刻的19.37%的PCE。该研究为高效中带隙FNEAs提供了合理的分子设计策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验