Suppr超能文献

用于锌阳极和二氧化锰阴极长期稳定性的双层界面的合理设计。

Rational Design of a Bilayer Interface for Long-Term Stability of Zn Anodes and MnO Cathodes.

作者信息

Zhu Kaiping, Zhuang Wubin, Wang Nanyang, Zhang Kai, Lin Lin, Shao Zhipeng, Li Chaowei, Wang Wenhui, Liu Shizhuo, Yang Peng, Xue Pan, Zhang Qichong, Hong Guo, Yao Yagang

机构信息

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.

Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, China.

出版信息

Adv Mater. 2025 Jun;37(24):e2502366. doi: 10.1002/adma.202502366. Epub 2025 Apr 28.

Abstract

Understanding the composition-characteristics-performance relationship of the electrolyte-electric double layer-electrode-electrolyte interface (EEI) is crucial to construct stable EEIs for high-performance aqueous Zn-MnO batteries (AZMBs). However, the interaction mechanisms in AZMBs remain unclear. This work introduces sodium thioctate (ST) into ZnSO electrolyte to construct a stable bilayer EEI on both Zn and MnO electrodes. First, zincophilic ST regulates the solvation structure of hydrated Zn, suppressing corrosion and the hydrogen evolution reaction. Second, the specific adsorption of ST reconstructs the inner Helmholtz plane, facilitating the desolvation of hydrated Zn and homogenizing charge distribution. Finally, ST molecules undergo reversible polymerization at the interface, forming a stable bilayer EEI with a poly(zinc thioctate) outer layer and a ZnS-organic amorphous inner layer, which ensures uniform zinc-ion flux and enhances mechanical stability. Additionally, the dynamic disulfide bonds in ST further enable self-regulation and self-healing of the interface, mitigating damage during cycling. As a result, the ST-enhanced Zn symmetric battery achieves 7800 cycles at 60 mA cm, while the AZMB exhibits only 0.0014% capacity decay over 10 000 cycles at 2000 mA g. This bilayer EEI engineering strategy offers effective guidance for the rational design of safe and long-life aqueous zinc-ion batteries.

摘要

理解电解质-双电层-电极-电解质界面(EEI)的组成-特性-性能关系对于构建用于高性能水系锌锰电池(AZMBs)的稳定EEI至关重要。然而,AZMBs中的相互作用机制仍不清楚。这项工作将硫代乙酸钠(ST)引入ZnSO电解质中,以在Zn和MnO电极上构建稳定的双层EEI。首先,亲锌的ST调节水合Zn的溶剂化结构,抑制腐蚀和析氢反应。其次,ST的特异性吸附重构了内亥姆霍兹平面,促进水合Zn的去溶剂化并使电荷分布均匀化。最后,ST分子在界面处发生可逆聚合,形成具有聚(硫代乙酸锌)外层和ZnS-有机无定形内层的稳定双层EEI,这确保了均匀的锌离子通量并增强了机械稳定性。此外,ST中的动态二硫键进一步实现了界面的自我调节和自我修复,减轻了循环过程中的损伤。结果,ST增强的Zn对称电池在60 mA cm下实现了7800次循环,而AZMB在2000 mA g下10000次循环中容量衰减仅为0.0014%。这种双层EEI工程策略为安全、长寿命水系锌离子电池的合理设计提供了有效指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验